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Abstract 
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription 
factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our 
knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem 
cell therapy and cell reprogramming provides compelling reasons for its feasibility for treating a wide range of 
diseases through the replacement of autologous cells. Continuous failure in embryonic stem cells (ESC) 
production and the dependency of iPSC on ectopic genes may be due to the inability to maintain the stability of 
the endogenous gene systems which are essential for creation of pluripotency state. With recent developments in 
the genome processing and human tissue culturing approaches as well as xenotransplantation, bioengineering, 
and genome editing, induced pluripotent stem cells offer the new opportunities for the study of human cancers. 
Most hematopoietic malignancies are originated from cells that are functionally heterogeneous and few of them 
are responsible for maintaining tumor state. The naming of these cancer stem cells are due to the quality 
characteristics of normal tissue stem cells, such as self-renewal, long term survival, and the ability to produce 
cells with more differentiated properties. The aim of present study was to focus on the recent progresses in the 
application of stem cell-based hematopoietic cancer, and to assess the benefits of treatment, opportunities, and 
shortcomings that can potentially help improve future efforts in experimental and clinical studies.  
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Introduction 
The human body comprises of over two 
hundred different types of cells that form 
tissues and organs and provide all the 
essential functions for survival and 
reproduction (1). All of cells in the body, 
both somatic (of all three germ layers) and 
germ cells, originate from the embryonic 
pluripotent cells (2). In 1961, for the first 
time, Till and McCulloh (3) introduced 
self-renewal properties in any living cells 
as one of their important breakthrough. 
They influenced the mice with lethal 
radiation doses and then injected bone 
marrow cells in mice. They found that the 
main reason of survived of the mice was 
these cells formed clumps due to cell 
cloned from them (4, 5). In 2006, Japanese 
researchers at Kyoto University recognized 

conditions that allowed specialized adult 
cells to be genetically “reprogrammed” to 
accept a stem cell-like state (6). These 
specialized cells, which are now called 
induced pluripotent stem cells (iPSCs), , 
were reprogrammed to an embryonic stem 
cell-like state via introducing important 
genes to maintaining the critical properties 
of embryonic stem cells (ESCs) (7). After 
this discovery, researchers have improved 
the generation techniques of iPSCs and 
created powerful new pathways to de-
differentiate cells, which their growth and 
developmental conditions was already 
determined (8-10). The main focus of 
worldwide investigators and clinicians is 
on the potential use of iPSCs as a helpful 
tool for disease modeling, drug 
development, and regenerative medicine 
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(11-13). Furthermore, the ethical issues 
related to the ESCs generation are not 
applied to iPSCs, proposing a non-
controversial strategy to create pluripotent 
cells using existing non-pluripotent cell 
lines which can be transplanted into the 
patients without the concern of immune 
rejection (autologous graft) (14, 15). 
However, there are many challenges in 
pre-temporary iPSC tests, one of which is 
teratoma development or tumorigenesis 
risk if they are inserted in sensitive sites 
such as promoters and host gene enhancers 
(16).    
 

Experimental strategies for iPSCs 
generation 
One strategy to achieve iPSCs generation 
is nuclear reprogramming, a stable 
alteration in the nucleus of a mature cell, 
which can then be preserved and replicated 
as the cell divides through mitosis (17). 
This strategy is implemented using 
techniques such as fuse somatic cells with 
ESCs, somatic cell nuclear transfer 
(SCNT), and altered nuclear transfer 
(ANT) (18, 19). The nuclear 
reprogramming approach involves the use 
of mature “somatic” cells from an adult 
and the introduction of genes that encoding 
critical transcription factor proteins that 
themselves regulate the function of other 
important genes in the early developmental 
stages of the  fetus (20, 21).  
In the previous studies, it was found that 
only four transcription factors (Oct4: 
Octamer binding transcription factor-4, 
Sox2: Sex determining region Y-box2, 
Klf4: Krupple like factor 4, and c-Myc) 
were required for reprogramming of 
mouse fibroblasts  to an embryonic stem 
cell–like state by forcing them to express 
important genes for maintenance of the 
defining properties of ESCs (22-24). In 
2007, two different research teams reached 
a new milestone through deriving iPSCs 
from human cells and using the original 
four genes containing Oct4, Sox2, Nanog, 
and Lin28 (25, 26). Since then, researchers 
have achieved the production of iPSCs 

from somatic tissues of the rat and monkey 
(27-29).  
Several methods have been considered for 
improving the effectiveness of the 
reprogramming and reducing the 
potentially harmful side effects of the 
reprogramming process (30). Since the 
retroviruses used to deliver the four 
transcription factors in the earliest studies 
can be potentially mutagens, researchers 
are not certain about whether all four 
factors are absolutely essential (23, 31, 
32). Specially, the c-Myc gene is known to 
increase the rate of tumor growth in some 
cases, which negatively affects iPSC 
efficiency in transplantation treatments 
(27, 33). For this purpose, researchers 
proposed a three-factor approach using 
Oct4 with the orphan nuclear receptor 
Esrrb and Sox2, and they were able to 
transform mouse embryonic fibroblasts 
into iPSCs. Similarly, other reports have 
indicated that c-Myc has not a functional 
role for direct reprogramming of mouse 
fibroblasts (34, 35). Studies have further 
reduced the number of essential genes for 
reprogramming, and investigators continue 
to recognize of chemicals that can replace 
or increase the efficiency of transcription 
factors in this procedure (36, 37). These 
successes continue to inform and facilitate 
the reprogramming process, thus 
advancing the field toward the production 
of patient specific stem cells for clinical 
application. However, the way through 
which transcription factors transfer to the 
somatic cells is critical to their potential 
use in the clinic (38). 
 

IPSCs in cancer therapy: 
opportunities and challenges 
Normally derived iPSCs from patient 
tissues can mainly be employed for tumor 
regeneration or treatment of the affected 
tissues. In regenerative medicine, 
numerous tissues can be produced by 
using iPSCs (2, 39). IPSCs therapy may be 
a good alternative for damaging 
approaches such as chemotherapy, 
radiotherapy, or surgical treatment. 
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However, regenerative therapy mediated 
by human iPSCs needs strong in vivo 
evidence from iPSC-derived tissues (19, 
40).  
Now, only a few types of human iPSC-
derived cells (e.g. hepatocytes) have been 
effectively assessed in vivo (41, 42). In 
addition to the direct role of iPSCs in 
cancer treatment, they can be utilized to 
screen novel anticancer drugs. Derived 
iPSCs from differentiating cancer tissue 
generate cell types that may be more 
biologically linked to human tumors and 
be more suitable for drug screening 
methods. IPSCs are also better candidates 
than other stem cells for evaluation of the 
toxicities of antitumor drugs (25, 37, 43).  
Similar to most chemotherapy 
components, stem cell therapy using a 
single agent commonly cannot eliminate 
tumors. Therefore, a desired drug 
combination should be rationally generated 
and selected (44, 45). Many of these 
combination therapies have been tested to 
improve treatment durability. For example, 
chemotherapy combined with interferon 
(IFN)-beta immunotherapy, by using a 
pro-drug/suicide gene system, has 
displayed synergistic therapeutic effects in 
human colorectal cancer (44, 46). In 2011, 
Zielske et al., found that irradiating tumor 
cells could induce production of factors 
that stimulate stem cell invasion and 
increase the number of stem cell in tumors 
(47).  
There are three possibilities for tumors in 
which cancer stem cells play a critical role. 
First, the mutations in the normal stem 
cells or progenitor cells and transformation 
of them into cancerous stem cells which 
can lead to the growth of the primary 
tumor. Second, many of the primary tumor 
cells may be killed during chemotherapy, 
but if the cancerous stem cells are not 
eliminated, they become cancer-resistant 
stem cells and may result in tumor 
recurrence. Third, the cancer stem cells 
may emigrate to distal positions from the 
primary tumor and cause metastasis (48). 
For these reasons, most previous 

researchers paid special attention to the 
pluripotent stem cells that might be highly 
tumorigenic. However, recently it is shown 
that iPSCs is safer for clinical use than 
ESCs and other stem cells (49). However, 
various strategies are used to minimize the 
risk and possibility of neoplastic 
transformation.  
In the first step, undifferentiated 
pluripotent stem cells, which are 
potentially tumorigenic, can be separated 
from clinical approaches using antibodies 
that focus on specific surface-displayed 
biomarkers. Stem cell differentiation 
downregulates expression of these 
biomarkers (50).  
Second, directed differentiation of iPSCs 
involves monitoring of the expression of 
the specific differentiation genes. 
Successfully differentiated cells can be 
recognized and screened by using 
recombinant reporter proteins. Green 
fluorescent protein (GFP) and similar 
proteins work well as reporters of 
differentiated  against undifferentiated 
cells (51). Third, antibody-guided toxins or 
toxic antibodies can kill the 
undifferentiated pluripotent stem cells 
through immune pathways. For instance, 
monoclonal antibodies against claudin-6, a 
surface biomarker for undifferentiated 
pluripotent ESCs and iPSCs, can guide 
immune-toxins to these stem cells for 
targeted and selective killing (52).  
Fourth, undifferentiated pluripotent stem 
cells can be removed from cytotoxic 
components, which can be utilized to kill 
targeted and selectively pluripotent stem 
cells that can progress into tumors (53).  
Fifth, potentially tumorigenic pluripotent 
stem cells can be transformed with suicide 
genes for sensitization towards pro-drugs. 
For this purpose, the enzyme/pro-drug 
cancer therapy strategies can be improved 
to kill undifferentiated pluripotent stem 
cells (54) Finally, tumorigenic pluripotent 
stem cells can be eradicated through self-
induced transgenic expression of 
recombinant human DNases (55). These 
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strategies can protect a large population of 
stem cells against tumor transformation.  
 

Application of iPSCs in 
regenerative medicine for cancer 
therapy  
It is proven that reprogramming of human 
primary cancer cells is very difficult. 
However, there have been relatively few 
reports demonstrating iPSCs production 
for successful reprogramming of tumoric 
human cells. The generation of novel iPSC 
and reprogramming cancer cells are 
thought to be faced with difficulties such 
as reprogramming-triggered cellular 
senescence, tumor-specific genetic 
mutations, epigenetic modifications, 
genomic instability, and accumulation of 
DNA damage. In spite of these difficulties, 
several researchers have reported the 
generation of new iPSC lines from present 
cancer cell lines. Reports of iPSC lines 
resulting from human cancer cell lines are 
summarized in Table I, which presents a 
range of cancers such as leukemia (AML) 
(56), breast cancer (57), retinoblastoma 
(58), colon cancer (44), Lliver cancer (59), 
hematologic and solid malignancies (60), 
melanoma (61), myelomonocytic leukemia 
(62), and glioblastoma (63). Based on 
these studies, reprogramming of cells with 
human cancer cell lines is not an 
impossible task. However, certain types of 
cancers may be commonly used against 
reprogramming factors and the 
combination of factors should be carefully 
selected depending on the type of cancer 
cells that are attempting to reprogram. 
Nevertheless, reports of iPSCs generated 
from human primary malignant cells are 
few and limited to certain cancers, 
especially leukemia. Hu et al., were 
successful in reprogramming primary 
human lymphoblasts using transgene-free 
iPSC technology to ectopically express 
OSKM, LIN28, NANOG, and the SV40 
large T gene from a BCR–ABL+ CML 

patient (64). Kim et al., reported 
generation of single iPSC-like line in the 
parental pancreatic ductal adenocarcinoma 
(PDAC) cancer cultures that contained 
KRAS G12D mutation (65). The rarity of 
successful studies demonstrates the 
difficulty of reprogramming primary 
cancer cells to iPSCs. However, technical 
limitations, such as complications in 
maintenance primary cancer tissues in 
culture, cannot be excluded; furthermore, 
the basic biological barriers may directly 
undermine the reprogramming process in 
cancer cells.  
In addition to particular characteristic of 
pluripotent stem cells, such as their self-
renewal and differentiation capabilities, 
they can repair human tissues after 
chemotherapy (66).  Clinically, after 
treatment of malignancies with high-dose 
radiotherapy or chemotherapy, 
transplanting human stem cells has been 
generally used to facilitate lifelong 
hematological recovery (67). The aim of 
this treatment is to reconstitute the bone 
marrow under conditions of marrow 
failure (for example, in aplastic anemia or 
other blood cell genetic diseases) and to 
apply human stem cells that differentiate 
into a desired type of hematopoietic cells 
in recipients (68). Normally originated 
iPSCs from patient tissues can 
theoretically be utilized to regenerate 
tumor- or treatment- damaged tissues (69). 
In regenerative medicine approaches, 
different tissues can be produced using 
iPSCs. IPSC therapy in regenerative 
medicine may be valuable in replacing or 
repairing cancer damaged cell by 
radiotherapy, chemotherapy, or surgical 
treatment (70). However, regenerative 
therapy mediated by human iPSCs needs 
in vivo extensive studies in iPSC-derived 
tissues. So far, only a small number of 
human iPSC-derived cells, such as 
hepatocytes, have been successfully 
evaluated in vivo (71, 72). 

 
 
  



 
Khandany et al  

121                                                                                    Iran J  Ped Hematol Oncol. 2019,  Vol 9. No 2, 117-130 
 

Table I: Applications of iPSCs in cancer therapy 
Origin cells used for 
generation of iPSC 

Reprogramming factors Cancer type Type of therapy 

Hematopoietic cells 
(Primary AML cells) 

OSKM Leukemia  investigating the mechanistic basis 
and clonal properties of human 
AML,  leukemic DNA 
methylation/gene expression patterns 

BRCA1-deleted blood 
cells  

OSKM  breast cancer Cancer development modeling 

 Skin cells from RB 
patient 

OSNL Retinoblastoma Cancer  development modeling 

Familial 
adenomatous 
polyposis (Colonic 
organoids) 

OSKM Colon cancer 
 

Modeling of drug Testing in 
Colorectal Cancer  
 

Hepatic cells OSKM Liver cancer The engraft the liver in a 
mouse transplantation model 

Natural killer cells (BJ1-
iPS12, UCBiPS7, and 
DRiPS16) 

OKSM hematologic 
and solid 
malignancies 

Anti-tumor therapy (tumor targeting) 

human tumor antigen-
specific T cells (CD8+ 
mature T-cells) 

OSKM melanoma Anti-tumor therapy(tumor targeting) 

Dendritic cells (cell lines: 
201B7, 253G4, 
CIRA188Ai-W2, and CB-
A11) 

OSKM, BMP4 immunological 
disorders 

Cancer immunotherapy such as DC-
based vaccines 

Juvenile Myelomonocytic 
Leukemia (JMML) 

OKSM Myelomonocyti
c Leukemia 

Cancer development modeling 

glioblastoma (neural 
lineage) 

OSKM, Oct4 glioblastoma  Cancer development modeling 

 

 
IPSCs and hematopoietic cancer 
therapy 
Developments in nuclear reprogramming 
of somatic cells lead to new ways of 
creating pluripotent stem cell lines and 
represent a significant step in the 
production of stem cell-based specific 
therapies (73). Pluripotency 
reprogramming approach is based on 
transfer of a somatic cell nucleus into an 

enucleated oocyte, and applying the 
expression of specific reprogramming 
genes in somatic cells (74, 75). These two 
methods are used to reprogram multiple 
various cell types, including pancreatic β 
cells, liver cells, fibroblasts, T and B 
lymphocyte cells, and neural progenitor 
cells (76-78). Although many types of 
cells can be under nuclear reprogramming, 
the fundamental differences between 
pluripotent stem cell lines derived from 
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distinct somatic cell types are largely 
unclear.  
An immune-mediated antitumor effect 
resulting from allogeneic hematopoietic 
stem cell (HSC) transplantation might be 
appropriate for the treatment of some 
hematological malignancies, such as CML, 
ALL, AML, Hodgkin and Non-Hodgkin 
lymphoma, multiple myeloma (MM), 
sickle cell anemia, thalassemia, and 
Fanconi anemia (79-81). These HSCs are 
the most common multipotent stem cells 
that can differentiate to all blood cell lines 
through hematopoiesis process (82, 83). 
After Yamanaka studies in the field of 
reprogramming, which led invention of 
iPS technology, many researchers have 
tried to generate induced hematopoietic 
stem cells (iHSC) derived from patients 
with blood malignancy (84, 85). 
Additionally, these researchers have 
shown that the specific expression of 13 
transcription factors such as OCT4 of 
OKSM factors can generate HSC. 
Recently, it has been proven that new 
genetic engineering tools can be used for 
producing of iHSCs, including CRISPR-
Cas9, meganucleases, zinc-finger 
nucleases (ZFN), double-strand break 
(DSB) nucleases, and transcription 
activator-like effector nucleases (TALEN) 
(86, 87). Studies have revealed that two 
transcription factors (HOXA and ERG) act 
as the core proliferation and differentiation 
factors in HSC and are inducers of the self-
renewal ability, and thus dysregulation of 
these factors progresses several types of 
leukemic cells (85). The main differential 
marker of hematopoietic stem cells is 
CD34 that help distinguish iHSC in 
association with other differentiation 
markers such as CD34, CD38, CD45, 
CD90, CD105, CD133, and C-kit (stem 
cell receptor) (83). 
 
1- Reprogrammed T-lymphocytes 

Presenting genes encoding chimeric 
antigen receptors (CARs) or T-cell 
receptors (TCRs) directed against tumor-
related antigens makes HSCs attractive for 

researches of cancer immunotherapy (88-
90). Patient-specific iPSCs can be also 
potentially helpful in immunotherapy 
methods (91, 92). The pre-rearranged TCR 
gene is reserved in T lymphocyte-derived 
human iPSCs, which can be further 
differentiated into functionally active T 
cells (93, 94).  
In recent years, various technologies, 
generally based on reversing 
immunosuppression, have been expanded 
by utilizing transferring cytotoxic T 
lymphocyte (CTL) (95) and transferring 
TCR gene (96). It is also necessary that 
they differentiate into double positive cells 
(CD4/8+), before generating iPSC-derived 
CTL (iCTL), by IL-2 which is the major 
cytokine in T-cell differentiation (97, 98).  
Experimentally tumor antigen-specific T 
lymphocytes can be generated in vitro by 
reprogramming designated T cells into 
iPSCs which are then differentiate back 
into T lymphocytes for infusion in 
patients. However, the safety of T cell-
derived human iPSCs must be more 
credible (99, 100).  
Since most cancers in a specific tissue 
include acquired nucleotide mutations, 
iPSCs resulted from other normal tissues 
of the same patient hypothetically can be 
used to regenerate those injured tissues by 
the tumors themselves or subsequent 
treatments (101, 102). However, 
applications the iPSC-derived tissues in 
cancer therapy, needs that confiremed by 
in vivo studies. It has been made clear that 
human iPSCs derived from T lymphocytes 
maintain the pre-rearranged T cell receptor 
(TCR) gene;  therefore, these iPSCs can be 
induced for differentiation into 
functionally active T cells (93, 94). In 
2018, Chao et al., described the generation 
of AML-iPSCs from two patients, with 
more emphasis on the notion that 
reprogramming of primary leukemias was 
not an unimportant assignment (103). 
Nevertheless, natural or technical 
reprogramming difficulties are significant 
barriers to reprogramming of primary 
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acute leukemic cells that need further 
investigation.  
The differences in reprogramming pre-
rearranged cells in AML and B-ALL 
propose that epigenetic reprogramming 
may be dependent on the specific genetic 
alterations and leukemia tumor subtype 
(104-106). Recent studies have shown that 
dendritic cells derived from human iPSCs 
can be completely functional for the 
assessment of hematopoietic diseases 
(107-109). However, these cells still need 
in vivo testing to confirm the effectiveness 
and safety of their application. 
 
2- Induced NK Cells 

Human natural killer (NK) cells are 
considered as an significant part of the 
innate immune system by producing 
significant cytokines for killing virally 
infected and/or malignant cells (110). 
While antitumor T‐cell immune responses 
involve a diagnostic initiating phase and 
their responses are restricted to human 
leukocyte antigen (HLA), mature NK cells 
effectively kill malignant cells without any 
previous exposure (111). In addition, NK 
cells are the link between innate and 
adaptive immune systems that can increase 
and accelerate immunologic responses 
using their memory ability. At present, 
these cells are extracted by leukapheresis 
from the blood circulation and then 
separated from other cells via magnetic 
beads coated with anti-CD56. Both NK 
cell ‐ and T cell ‐based adoptive 
immunotherapies have been used to treat 
patients with tumor malignancies. In recent 
studies, CD34+ hematopoietic progenitor 
cells derived from umbilical cord blood 
(UCB) are also being used as a basis for 
the generation of many numbers of 
allogeneic NK cells (112). Some research 
groups have defined various protocols for 
the production of NK cells from CD34+ 
cells using culture of stromal cell lines and 
a combination of cytokines that progress 
the expansion of NK cells (113-115). 
Furthermore, other researchers have been 

able to produce large numbers of UCB 
CD34+ cells-derived NK-cells for adoptive 
immunotherapy in large-scale bioreactors, 
and for the use in future clinical cancer 
trials (116, 117). According to the studies 
on induced NK cells based on iPSC (iNK 
cells), reprogrammed NK cell can supply 
the desired volume of cell product to be 
used in leukemia therapy panel without 
any immunological response.  
 

Conclusion 
Induced pluripotent stem cells provide an 
alternative approach to human embryonic 
stem cells (hESCs) without any ethical 
concerns and with universal usage. Since 
they are obtained from dedifferentiation of 
adult cells and not from embryo, iPSCs 
overcome the ethical hurdles of embryonic 
stem cells. There are still significant 
obstacles that need to be considered. 
Despite the attractive research on iPSC-
derived cell transplantation in the grafts, 
there is still a potential risk of tumor 
formation. It is possible to generate patient 
specific iPSC from somatic tissues, which 
can contribute to drug development, 
disease modeling, and autologous stem 
cell therapy.  Stem cells migrate to solid 
tumors and facilitate site-specific anti-
tumor drug delivery. It is clear that 
induced hematopoietic stem cells -derived 
immune cells provide a genetic 
manageable system to study human 
immune cell function and progress. In 
addition, these immune cells provide a 
main source of lymphocytes and may open 
new doors for cancer therapy. Finally, 
these studies have demonstrated that cell 
reprogramming in primary tumor cells is 
more difficult, and that further 
technological development is needed to be 
able to generate reliable iPSC models of 
cancers. 
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