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Abstract 
Background: Visceral leishmaniasis (VL) is a lethal parasitic disease, transmitted by 
sand fly vectors. Immunomodulatory properties of sand fly saliva proteins and their 
protective effects against Leishmania infection in pre-exposed animals suggest that a 
combination of an antigenic salivary protein along with a Leishmania antigen can be 
considered for designing a vaccine against leishmaniasis 
Methods: Three different fusion forms of L. infantum hypothetical protein (LiHyV) in 
combination with Phlebotomus kandelakii salivary apyrase (PkanAp) were subjected to in-
silico analyses. Major Histocompatibility Complex (MHC) class I and II epitopes in both 
humans and BALB/c mice were predicted. Antigenicity, immunogenicity, epitope con-
servancy, toxicity, and population coverage were also evaluated.  
Results: Highly antigenic promiscuous epitopes consisting of truncated LiHyV (10-
285) and full-length PkanAp (21-329) were identified in human and was named Model 
1. This model contained 25 MHC-I and 141 MHC-II antigenic peptides which among 
them, MPANSDIRI and AQSLFDFSGLALDSN were fully conserved. 
LALDSNATV, RCSSALVSI, ALVSINVPL, SAVESGALF of MHC-I epitopes, and 28 
MHC-II binding epitopes showed 60% conservancy among various clades. A popula-
tion coverage with a rate of >75% in the Iranian population and >70% in the whole 
world was also identified.  
Conclusion: Based on this in-silico approach, the predicted Model 1 could potentially 
be used as a vaccine candidate against VL. 
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Introduction 
 

eishmaniases are a set of vector-borne 
diseases caused by intracellular para-
sites of the Leishmania genus, transmit-
ted to vertebrate hosts by infected fe-

male Phlebotomine sand fly bites during 
blood-feeding (1, 2). Visceral Leishmaniasis 
(VL),  also known as kala-azar, is the most 
serious form of leishmaniases and is fatal if 
left untreated (3). L. (L.) infantum is the main 
causative agent of VL in Iran (4). Many VL 
control policies such as limiting the vectors 
and reservoirs are proven ineffective (5, 6). 
Hence, vaccination remains the most effective 
approach to provide long-lasting immunity 
against the infection (6). Despite extensive 
studies, there is still no reliable VL vaccine (7). 
Recently, few antigenic proteins specific to 
Leishmania genus (annotated as hypothetical 
proteins in genome databases), have been re-
vealed by proteomic studies (8). Effective an-
tigen candidates against leishmaniases should 
be shared by different Leishmania species and 
induce immune responses against all or most 
of the species (9). Among them is L. infantum 
hypothetical protein V (LiHyV), present in 
both promastigote and amastigote stages of 
the parasite (10). LiHyV has a high homology 
at the amino acid level (> 85 %) among L. 
major, L. amazonensis, and L. infantum (11). The 
recombinant LiHyV protein (rLiHyV) is rec-
ognized by antibodies of dogs affected by VL. 
Moreover, the prophylactic efficacy of rLiHyV 
protein in a murine model has been reported 
(11).  
Sand fly salivary proteins are immunomodula-
tory and have important roles in the estab-
lishment of Leishmania infection as well as the 
immune responses of the host (12, 13). Sali-
vary apyrases of various sand fly species are 
recognized among the most antigenic salivary 
proteins, detectable by sera of repeatedly-
bitten hosts (14-19). Phlebotomus (P.) kandelakii 
is a widespread vector of L. infantum in Iran 

(20). Recently, we have characterized the full 
sequence of salivary apyrase of this vector 
(PkanAp; NCBI accession number 
QNG40038).  
Assuming that the combination of a Leishma-
nia antigen with sand fly salivary antigenic pro-
teins could elevate the potential immunologi-
cal responses (21), here we used im-
munoinformatics analyses of three different 
fusion constructs of LiHyV and PkanAp with 
a rigid linker (PQDPP), using in-silico methods. 
We then aimed to identify the potentially 
common immunogenic T-cell epitopes in mice 
and humans and predicted the best fusion 
construct, based on the predicted conservancy, 
antigenicity, physicochemical properties, and 
tertiary structures. 
 

Materials and Methods 
 
Study plan 
A schematic plan of the methodology is 
demonstrated in Fig. 1. 
 
Amino acid sequence retrieval, multiple 
sequence alignment, phylogenetic analysis 
and signal peptide predictions 
The amino acid sequences of hypothetical 
proteins, conserved in 5 Leishmania species, 
and also salivary apyrases in various Phleboto-
mus and Lutzomyia species were retrieved from 
NCBI database. The Accession numbers were 
as follows: Hypothetical protein 
XP_001462854.1 (reference sequence), 
XP_003858079.1, XP_888524.1, 
XP_001561708.1 and XP_010703666.1; Sali-
vary apyrase in P. kandelakii QNG40038 (ref-
erence sequence), AGT96454.1, AAG17637.1, 
ACS93497.1, ABB00907.1, AAX56357.1, 
ABI20151.1, ABA12135.1, ADJ54111.1, 
ADJ54077.1, AAD33513.1, AFP99246.1 and 
BAM69107.1.  
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Fig. 1: Schematic representation of the immunoinformatics predictions 

 
Conserved regions were obtained by multiple 
alignments of the hypothetical proteins, as 
well as the salivary apyrases by ClustalW (22). 
To infer the evolutionary history of salivary 
apyrase families, phylogenetic analysis was 
performed by the maximum likelihood meth-
od tested with Jones-Taylor-Thornton (JTT) 
model by MEGA software v. 6.0 (22). The 
presence and location of the putative signal 
peptide of the apyrase were analyzed by Signal 
P-5.0 server (23). 
 
T-cell epitope prediction in BALB/c mice 
and humans 
 The Major Histocompatibility Complex 
(MHC) class I and II epitopes of the three ar-
rangements of LiHyV-PQDPP-PkanAp were 
predicted by IEDB < 
http://tools.iedb.org/mhc/n>. The most 
common Human Leukocyte Antigens (HLAs) 
in the Iranian population were selected ac-
cording to 
<http://www.allelefrequencies.net> website 
and previously-published papers which in-

cluded  Iranians from different regions (24, 
25), Lur and Kurd ethnicities (26) as well as  
people from the following provinces of 
Khorasan in North-East (27), Fars in South 
(28) and Markazi in Center (29) of Iran. Re-
garding, BALB/c mice, H2-Dd, H2-Kd, and 
H2-Ld as MHC-I alleles and H2-IAd, H2-IEd 
as MHC-II alleles were considered for evalua-
tion.  
 
Predictions of antigenicity, immunogenic-
ity, population coverage, and epitope con-
servancy 
ANTIGENpro was used for the prediction of 
antigenicity 
<http://scratch.proteomics.ics.uci.edu/> and 
VaxiJen v2.0 for antigenic scores of the pep-
tides <http://www.ddg-
pharmfac.net/vaxijen/> (30) with 0.45 
threshold. Immunogenic epitopes capable of 
eliciting cell-mediated immunity were predict-
ed by IEDB MHC-I immunogenicity predic-
tion module 
<http://tools.iedb.org/immunogenicity/> 
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where higher scores indicate greater probabili-
ties of eliciting an immune response. Popula-
tion coverage analysis was done by submitting 
putative T-cell epitopes from the models to 
<http://tools.immuneepitope.org/tools/pop
ulation/iedb_input> while conservancy or 
variability of the epitopes was evaluated by 
IEDB conservancy analysis tool 
<http://tools.iedb.org/conservancy/> (31). 
 
Toxicity and allergenicity analyses 
The predicted epitopes were evaluated by 
ToxinPred 
<http://crdd.osdd.net/raghava/toxinpred/> 
(32). AllerTOP v.2.0 was used to analyze the 
allergenicity <https://www.ddg-
pharmfac.net/AllerTOP/method.html> (33).  
 
Primary and secondary structure analyses  
Physicochemical properties (Mw, amino acid 
composition, aliphatic index, theoretical Isoe-
lectric point (pI), Grand Average of Hydro-
pathicity index (GRAVY), estimated half-life, 
and extinction coefficient) were characterized 
by ProtParam webserver 
<https://web.expasy.org/protparam/> (34). 
The secondary structure elements (the number 
of α-helices, β-sheets, and random coils) of 
the selected models were determined by 
SOPMA alignment tool <https://npsa-
prabi.ibcp.fr/cgi-
bin/npsa_automat.pl?page=/NPSA/npsa_so
pma.html> (35, 36). DiANNA webserver was 

used to predict cysteine classification and di-
sulfide connectivity (37). 
 
Homology modeling validation 
The 3D structures of the proteins were mod-
eled using I-TASSER online server (38) and 
visualized by PyMol v1.2. The highest confi-
dence score (c-score) signified the best model. 
The overall model quality was validated by 
ProSA web tool (39). The stereochemical 
quality was evaluated by Ramachandran's map 
from RAMPAGE online server 
<http://mordred.bioc.cam.ac.uk/~rapper/ 
rampage.php>. 
 

Results 
 
Multiple alignment and phylogenetic 
analysis 
Based on the protein sequence alignment, two 
conserved regions (10- 285 and 350- 522 resi-
dues) of LiHyV protein were selected. Since P. 
kandelakii is considered as one of the endemic 
vectors of VL in Iran, a full-length sequence 
of PkanAp protein was used as the second 
part of the predicted constructs. The cleavage 
site of the signal peptide of PkanAp protein 
sequence was predicted between residues 20 
and 21 with a 0.95 probability. Accordingly, 3 
possible arrangements of LiHyV-PQDPP-
PkanAp fusion protein were designated for 
further assessments (Table 1).  

 
Table 1: Number of the antigenic peptides of the 3 fusion models 

 
Fusion Model* BALB/c mice Human 
 CTL epitopes HTL epitopes CTL epitopes HTL epitopes 

Model 1 
LiHyV (10-285)- PQDPP- PkanAp (21-329) 

6 2 25 141 

Model 2 
LiHyV (1-528)- PQDPP- PkanAp (21-329) 

7 8 34 153 

Model 3 
LiHyV (350-522)- PQDPP- PkanAp (21-329) 

5 6 22 70 

Antigenicity score ≥0.45 
*Predicted fusion models from L. infantum hypothetical protein (LiHyV) and P. kandelakii salivary apyrase (PkanAp) with 
the linker (PQDPP). (The first 20 amino acids of PkanAp detected as a signal peptide were excluded) 
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Phylogenetic tree analyses of the apyrase fami-
ly of Phlebotomus and Lutzomyia salivary pro-
teins indicated a very close relationship be-

tween P. kandelakii and P. orientalis salivary ap-
yrases (Fig. 2). 

 

 QNG40038.1 P.kandelakii

 AGT96454.1 P.orientalis

 AAX56357.1 P.ariasi

 ACS93497.1 P.arabicus

 ABB00907.1 P.perniciosus

 ADJ54077.1 P.tobbi

 ABA12135.1 P.argentipes

 ADJ54111.1 P.sergenti

 ABI20151.1 P.duboscqi

 AAG17637.1 P.papatasi

 BAM69107.1 Lu.ayacuchensis

 AAD33513.1 Lu.longipalpis

 AFP99246.1 Lu.intermedia

 AAD09177.1 Cimex lectularius

 CAL26008.1 Drosophila melanogaster
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Fig. 2: Phylogenetic tree analysis comparing P. kandelakii salivary apyrase (PkanAp) (black circle) with the 
other apyrases family. Amino acid sequences were compared based on the maximum likelihood method with 

1000 bootstrap replicates 

 
Prediction of CTL and HTL epitopes 
The frequencies of high-affinity antigenic pep-
tides (percentile rank ≤ 1) of the 3 models are 
listed in Table 1. Model 2 contained the most 
peptides with a high antigenicity score. How-
ever, in vaccine design, using a short-length 
conserved model with a high antigenicity 
score is preferable. A comparison of the 2 
truncated models revealed that Model 1 with 
more antigenic regions had a greater chance to 
induce a cellular immune response. The dif-
ferences were not significant for BALB/c 
mice. 

The antigenic Cytotoxic T-Lymphocyte (CTL) 
epitopes in Model 1 are indicated in Table 2. 
Since Model 1 had more human Helper T-
lymphocyte (HTL) epitopes and the second 
part of all the models were the same, the con-
served and antigenic promiscuous epitopes of 
truncated LiHyV in Model 1 were reported in 
Table 3. Altogether, the three fusion protein 
models were found to be antigenic, according 
to ANTIGENpro predicted scores of 0.88, 
0.92, and 0.94. 
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Table 2: Antigenic epitopes of Model 1 interacting with human HLA-I 

 

Peptide Position HLA-I Percentile 
Rank 

Antigenicity Immunogenicity 

ARLSMNMAI 78-86 HLA-B*27:02 
HLA-B*27:05 

0.08 
0.8 

0.4780 -0.4725 

RCSSALVSI* 211-219 HLA-A*32:01 0.6 0.5634 -0.25433 
LALDSNATV* 127-135 HLA-B*51:01 0.4 1.0046 -0.09277 
ALLCAVVVL 3-11 HLA-A*02:01 0.9 0.5302 0.07807 
SAVESGALF* 265-273 HLA-A*26:01 0.59 0.6385 0.01149 
DVTMSDASF 26-34 HLA-A*26:01 0.58 0.7252 -0.36796 
ALVSINVPL* 215-223 HLA-A*02:01 0.9 0.8812 -0.0012 
CERCSSALV 209-217 HLA-B*50:01 0.1 0.932 -0.32774 
MSDASFDDY 29-37 HLA-A*01:01 0.11 1.0868 0.02735 
DASFDDYTM 31-39 HLA-B*35:01 0.5 1.2381 0.12614 
MPANSDIRI** 100-108 HLA-B*51:01 0.2 1.4794 0.00853 
ELIYFNGKL 351-359 HLA-A*26:01 0.66 0.9218 0.04999 
ERNGQTVTY 549-557 HLA-B*27:02 0.86 1.2339 0.01326 
ESGHITNIY 436-444 HLA-A*01:01 0.65 0.6599 0.28199 
FTQNSYHGL 337-345 HLA-B*35:03 0.51 0.9496 -0.16159 
GAELSELIY 346-354 HLA-A*01:01 0.73 0.9649 0.02289 
IERNGQTVT 548-556 HLA-B*50:01 0.29 1.3453 -0.00887 
KEISESGHI 432-440 HLA-B*50:01 0.33 1.6263 -0.134 
NIYWENQYK 442-450 HLA-A*03:01 

HLA-A*11:01 
0.67 
0.79 

0.7244 0.21318 

NRFTSIVKY 307-315 HLA-B*27:02 
HLA-B*27:05 

0.17 
0.6 

0.5829 -0.04992 

SESGHITNI 435-443 HLA-B*50:01 0.29 1.2185 0.16616 
SGHITNIYW 437-445 HLA-B*57:01 1 1.5017 0.28629 
SIVKYGELK 311-319 HLA-A*11:01 0.44 0.9789 -0.09728 
SPRKNIWVF 471-479 HLA-B*35:01 0.37 1.1449 0.12984 
YFNGKLYTI 354-362 HLA-A*24:02 0.43 2.8865 -0.16888 

Model 1 [LiHyV (10-285)-PQDPP-PkanAp (21-329)]. 
*epitopes with 60% conservancy, **fully conserved epitopes. 
Antigenicity score ≥0.45. 
 Positions of peptides: 1-276 aa of LiHyV, 277-281 aa of linker, 282-590 aa of PkanAp 

 
Population coverage and conservancy 
analysis of Model 1 
MHC-binding peptides analyzed for popula-
tion coverage revealed acceptable coverage of 
87.76% for MHC- I and 77.63% for MHC-II 
in the Iranian population. The results for oth-
er populations are indicated in Table 4. Two 
fully conserved epitopes including MPANS-

DIRI and AQSLFDFSGLALDSN were indi-
cated while four CTL epitopes including 
LALDSNATV, RCSSALVSI, ALVSINVPL, 
and SAVESGALF showed 60% conservancy 
(Table 2). Furthermore, 28 HTL epitopes 
were 60% preserved among the various clades 
(Table 3). 
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Table 3: Conserved and antigenic promiscuous T-cell epitopes of Model 1 interacting with human HLA-II 

 
Peptide *Positi

on 
HLA-II Antigenic-

ity 
ADVVTVQLINS-
QVSG 
ITLSGVMPANSDIRI 

48-62 
94-108 

HLA-DRB1*03:06, HLA-DRB1*03:07, HLA-
DRB1*03:08 

HLA-DRB1*11:07 

0.5197 
1.3287 

MPANSDIRIVATTGS 
PANSDIRIVATTGSL 
ANSDIRIVATTGSLA 
NSDIRIVATTGSLAP 
SDIRIVATTGSLAPA 
DIRIVATTGSLAPAQ 
IRIVATTGSLAPAQS 

100-114 
101-115 
102-116 
103-117 
104-118 
105-119 
106-120 

HLA-DRB1*03:06, HLA-DRB1*03:07, HLA-
DRB1*03:05, HLA-DRB1*03:08, HLA-

DRB1*03:09, HLA-DRB1*04:02, 
HLA-DRB1*04:08, HLA-DRB1*04:10, HLA-

DRB1*04:23, HLA-DRB1*04:26, HLA-
DRB1*04:21, HLA-DRB1*11:07, 

HLA-DRB1*11:04, HLA-DRB1*11:06, HLA-
DRB1*11:02, HLA-DRB1*11:21, HLA-
DRB1*11:28, HLA-DRB1*13:07, HLA-
DRB1*13:05, HLA-DRB1*13:01, HLA-
DRB1*13:11, HLA-DRB1*13:22, HLA-

DRB1*13:28, HLA-DRB1*13:27 

0.8680 
0.7589 
0.8213 
0.8890 
0.7071 
0.8234 
0.4904 

AQSLFDFSGLALDS
N 
QSLFDFSGLALDSN
A 
SLFDFSGLALDSNA
T 
LFDFSGLALDSNAT
V 

118-132 
119-133 
120-134 
121-135 

HLA-DRB1*15:06 0.5132 
0.5365 
0.4744 
0.5750 

FDFSGLALDSNATV
M 

122-136 HLA-DRB1*04:01 
HLA-DRB1*13:41 

0.8913 

DFSGLALDSNATVM
V 
FSGLALDSNATVMV
E 
SGLALDSNATVMVE
N 
GLALDSNATVMVE
NT 

123-137 
124-138 
125-139 
126-140 

HLA-DRB1*11:86, HLA-DRB1*13:16, HLA-
DRB1*13:41 

HLA-DRB1*13:38, HLA-DRB1*13:36, HLA-
DRB1*13:65 

HLA-DRB1*13:76, HLA-DRB1*13:96 

1.2197 
1.4112 
1.3744 
1.3111 

VDY-
GRCERCSSALVS 
DYGRCERCSSALVSI 
YGRCERCSSALVSIN 

204-218 
205-219 
206-220 

 

HLA-DRB1*03:05, HLA-DRB1*11:14, HLA-
DRB1*11:20 

HLA-DRB1*11:28, HLA-DRB1*13:07, HLA-
DRB1*13:05 

HLA-DRB1*13:23 

0.8439 
0.7467 
0.7573 

ERCSSALVSINVPLV 
RCSSALVSINVPLVV 
CSSALVSINVPLVVD 
SSALVSINVPLVVDA 
SALVSINVPLVVDAS 
ALVSINVPLVVDASS 

 
210-224 
211-225 
212-226 
213-227 
214-228 
215-229 

HLA-DRB1*03:05, HLA-DRB1*03:09, HLA-
DRB1*11:07 

HLA-DRB1*11:04, HLA-DRB1*11:06, HLA-
DRB1*11:28 

HLA-DRB1*13:05, HLA-DRB1*13:11 

 
0.6017 
0.7988 
0.7077 
0.8872 
0.7955 
0.6058 

LVSINVPLVVDASSL 
VSINVPLVVDASSLF 

216-230 
217-231 

 
HLA-DRB1*03:05, HLA-DRB1*03:09, HLA-

DRB1*11:07 
 

0.5107 
0.6508 

Model 1 [LiHyV (10-285)-PQDPP-PkanAp (21-329)]. 
*Positions of peptides: 1-276 aa of LiHyV, 277-281 aa of linker, 282-590 aa of PkanAp 
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Table 4: Population coverage of Model 1 

 

Location MHC-I 
*PPC(%) 

Average of 
Epitope Hits 

MHC-II 
PPC(%) 

Average of 
Epitope 

Hits 
Iran 87.76 8.07 77.63 30.01 
Southwest Asia 80.9 6.76 94.07 27.99 
Europe 96.65 8.68 79.07 32.48 
North America 89.28 6.98 76.73 30.03 
South America 64.96 3.47 58.8 15.83 
North Africa 73.54 5.63 81.61 35.12 
World 91.08 7.15 73.0 26.98 

                              *PPC: Percent of Population Coverage 
 

 
Toxicity and allergenicity appraisal of 
Model 1 
Toxicity prediction of the epitopes confirmed 
that all 9-mer peptides were non-toxic. Except 
for TVDYGRCERCSSALV epitope, the rest 
of the 15-mer peptides were also identified as 
non-toxic. The allergenicity of this vaccine 
candidate was nonallergic and safe. 
 
Primary and secondary structure analysis 
of Model 1  
This Model is composed of 596 amino acids 
containing 55 negatively-charged and 57 posi-
tively-charged residues with a pI value of 8.11. 
The predicted Mw of the protein was 64.6 
kDa. The protein model was estimated to be 
stable due to its high aliphatic index of 90.1 
and appropriate instability index of 22.60. 
Moreover, the model is expected to be hydro-
philic (GRAVY: -0.043), consisting of 16.44% 
alpha-helices, 10.57% beta turns, 40.60% ran-

dom coils and 32.38% extended strands. 
Three disulfide bonds were predicted at 6 – 
209 (LiHyV: ALALLCAVVVL – VDY-
GRCERCSS), 212 – 499 (LiHyV: 
GRCERCSSALV – PkanAp: EENTGCN-
QIIT), and 236 – 484 (LiHyV: 
FRVANCKAVGA – PkanAp: FMPRK-
CSNQQF) locations. 
 
Tertiary structure prediction and valida-
tion of Model 1 
The generated C-score by I-TASSER was 
within an acceptable confidence range (-0.94). 
Ramachandran Plot results indicated that 
61.1% of the residues were in the favored re-
gion and most of them were in the allowed 
regions (Fig. 3). The protein image is shown in 

Fig. 4A. ProSA z-score was -4.61 that indicat-
ing the acceptable quality of the generated 
model (Fig. 4B). 
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Fig. 3: Ramachandran plot indicating the percentages of the residues in the favored and allowed regions 
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Fig. 4: Structural analyses of Model 1. (A) Tertiary structure of protein Model 1: yellow, red, and green colors 
indicates LiHyV (10-285), PQDPP (rigid linker), and PkanAp (21-329), respectively (B) ProSA plot in which 
the black spot represents the overall quality of the final model compared to the structure of proteins with a 

similar size that was determined by X-ray and NMR 

 

Discussion 
 
Many studies (reviewed by Ratnapriya et al) on 
vaccine development against VL have been 
conducted over the last decade; however, no 
appropriate VL vaccine is available so far (40). 
Since L. infantum is an intracellular parasite, the 
Th1 immune response plays a major role in 
controlling VL while the humoral response 
seems less important. Accordingly, T-cell 
epitopes-based vaccines are more efficient 
against VL (41). Among major considerations 
in designing vaccines is to overcome the dis-
crepancy in the immune response in a genet-
ically heterogeneous population. Therefore, 
prediction and conservancy analyses of pro-
miscuous T-cell-binding epitopes to HLA-I 
and II molecules that drive CD8+ and CD4+ 
T-cell responses in a target population would 
be of utmost importance. Herein, we predict-
ed for the first time three fusion protein mod-
els, incorporating LiHyV and PkanAp to de-

sign a subunit vaccine for the prevention of 
VL in humans. Furthermore, we evaluated 
potential T-cell epitopes, antigenicity, immu-
nogenicity, epitope conservancy, toxicity, and 
population coverage of these models.  
Immunization of BALB/c mice with a re-
combinant LiHyV (rLiHyV) and two of its 
CD8+ T-cell epitopes indicated that mice vac-
cinated with rLiHyV/saponin exhibited a Th1 
cellular response with high production of 
IFN-γ and reduced parasite burden compared 
(11). Since the two aforementioned epitopes 
showed poor immunogenicity alone, it appears 
that selecting a larger portion of the protein 
with more immunogenic epitopes would make 
a better vaccine candidate. Computational 
vaccinology methods have been used in an-
other study where using multiple peptides was 
assumed to improve the protective efficacy of 
a VL vaccine, in which potential immunodom-
inant epitopes of LiHyV along with antigenic 
proteins were selected (42). Immunization of 
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BALB/c mice with this construct has caused 
robust Th1 response and significantly reduced 
Th2 response and parasite load (43).  
It is known that sand fly salivary components 
are highly antigenic and the hosts repeatedly 
bitten by sand fly or immunized with sand fly 
salivary proteins, become protected against 
Leishmania infections (18, 19). Hence, recom-
binant proteins based on the antigens found in 
sand fly saliva are currently under investiga-
tion as vaccines against leishmaniases (18, 19). 
Interestingly, yellow related proteins and apy-
rase of P. papatasi saliva have been shown to 
induce significant CD4+ proliferation and 
IFN-γ production in the immunized individu-
als. Moreover, multiplex cytokine analysis has 
revealed that a Th1-polarized response could 
be prompted by such proteins (44). 
Here, based on multiple sequences alignment 
of available LiHyV proteins in the database, 
two regions were selected as the first parts of 
fusion Models 1 and 3. In Model 2, full 
lengths of LiHyV and PkanAp were fused. 
The immunoinformatics analyses of the mod-
els indicated that the full lengths of both pro-
teins contained more MHC-binding regions; 
however, they were not all conserved and 
epitopic. Consequently, we focused on Models 
1 and 3 with shorter lengths, based on the T-
cell epitopes localization in conserved regions 
and their binding abilities to BALB/c mice 
and human MHC-I and II, as well as their an-
tigenicity and immunogenicity. The toxicity 
scores of the predicted T-cell epitopes of all 
the models were also examined. The BALB/c 
mice MHC-I binding regions with high anti-
genicity scores were comparatively alike in all 
3 models. Considering MHC-II binding, Mod-
el 3 disclosed more antigenic properties than 
Model 1 for BALB/c mice. To verify whether 
the obtained results were also compatible with 
humans, human MHC molecules were also 
examined for the 3 models. When the most 
common HLA with the most frequent alleles 
in the Iranian population was selected, Model 
1 contained 25 antigenic peptides with MHC-I 

affinity. Among them, MPANSDIRI showed 
a high Vaxigen score (1.4794), positive immu-
nogenicity score, and 100% conservancy 
among different clades. Also, four epitopes of 
Model 1, showed a high antigenicity score 
with 60% conservancy (Table 2). We identi-
fied, 22 antigenic peptides with MHC-I affini-
ty in Model 3 which only 3 epitopes were 60% 
conserved. 
Considerable differences were also observed 
over HLA-II binding antigenic epitopes, be-
tween Models 1 and 3. In Mode 1, we detect-
ed 141 HLA-II binding peptides with high 
antigenicity scores which were similar to full-
length Model 2 with 153 antigenic binding 
epitopes. However, the antigenic peptides 
were reduced to 70 in Model 3. In Model 1, 
from 141 HLA-II peptides, 76 epitopes were 
derived from LiHyV and 65 were from Pka-
nAp. Since the second part of the models was 
the same, in Model 3 only 5 antigenic epitopes 
belonged to LiHyV.  
Epitope conservancy has a principal role in 
the efficiency of a vaccine. While HLA-II an-
tigenic epitopes of Model 1 were fully con-
served and had 28 antigenic epitopes with 
60% conservancy, no HLA-II antigenic 
epitopes with ≥ 60% conservancy could be 
revealed in Model 3. Altogether, fusion Model 
1 with more antigenic regions, especially con-
cerning HLA-II promiscuous epitopes, pre-
sented a greater possibility to induce a cellular 
immune response. The predicted peptides of 
Model 1 with affinity to human MHC-I, 
demonstrated 87.76% coverage in the Iranian 
population and 91.08% in the whole world 
whereas MHC-II peptides exhibited 77.63% in 
the Iranian population and 73.03% worldwide 
coverage. Moreover, high population coverage 
in Europe, America, Africa, and South-West 
Asia for both MHC classes was observed (Ta-
ble 4).  
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Conclusion 
 
Our proposed fusion construct of LiHyV-
PkanAp incorporates highly promiscuous 
HLA-I and HLA-II restricted epitopes, as well 
as immune-dominant regions. Model 1 is en-
visaged to stimulate both CD4+ and CD8+ 
T-cell responses which could potentially con-
tribute to the pathogen elimination inside the 
infected cells. Further in-vitro and in-vivo as-
sessments are required to confirm the efficacy 
of this construct as a protective vaccine 
against VL. 
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