An Overview of the Application of Poly(lactic-co-glycolic) Acid (PLGA)-Based Scaffold for Drug Delivery in Cartilage Tissue Engineering
Abstract
Poly(lactic-co-glycolic) acid (PLGA) has attracted a considerable amount of interest for biomedical application due to its biocompatibility, tailored biodegradation rate (depending on the molecular weight and copolymer ratio), approval for clinical use in humans by the U.S. Food and Drug Administration (FDA), the potential to change surface properties to create better interaction with biological materials and being suitable for export to countries and cultures where planting products with animals is unusable. For commercial use and research, PLGA has been widely studied to control small molecule drugs, proteins, and other macromolecules. This study aims to review the studies that used PLGA scaffolding and its composites as a scaffold and drug delivery in cartilage tissue engineering. It is concluded from the results that the PLGA scaffold as a synthetic scaffold, when combined with natural scaffolds or hybrids, strengthens its biological properties and performs its function better.