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Recently, it has been proven that cartilage healing is difficult. The most 

commonly used treatments are autogenously cartilage grafting and 

allogeneic bone grafting, but grafts cannot fully meet treatment goals 

because of source, price, safety, and other concerns. Thus, a combination 

of biological materials and tissue engineering technology has become a 

recent trend in studies. Among the studies performed on tissue engineering 

cartilage materials are hydrogels that exhibit biological activity, post-

decomposition adsorption, flexibility, and easy preparation. Cell-

containing hydrogels are often used in cartilage tissue engineering because 

of their biocompatibility, ease of use, and ability to adapt to different 

defects. Hydrogels are used to mimic extracellular matrices. Although 

multiple materials can configure and form hydrogels, hyaluronic acid and 

its derivatives are distinguished. Hyaluronic acid (HA) is an extracellular 

molecule with several physical and biological functions found in many 

tissues, including cartilage. HA is formed in several biomaterial systems 

and scaffolding. HA hydrogels have many interests, including increased 

adhesion, cell proliferation, and wound healing. In addition, they represent 

adequate biological acting for stimulating a microenvironment for the 

survival of cells. However, their disadvantages include a slow degradation 

rate and low mechanical properties. Here, HA-based hydrogels and their 

applications in cartilage tissue engineering are briefly reviewed. 
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Introduction 

Articular cartilage has limited potential for 

spontaneous healing. This property often leads to 

osteoarthritis, pain, and dysfunction of the 

affected joint [1, 2]. Although many accepted 

treatments are accessible to repair damaged 

articular cartilage structures, including micro-

fractures, cell implants, and tissue transplants, 

these methods often do not repair strong, well-

repaired articular cartilage [3-5]. In recent years, 

cartilage tissue engineering (CTE) has prepared a 

prospective strategy for articular regeneration by 

combining cells with scaffolds.  

Fakhari et al. developed this scaffold in tissue 

engineering (TE) applications by researching 

hyaluronic acid (HA) hydrogels. HA is a non-

sulfated glycosamino-glycan (GAG) and is a 

significant component of the extracellular  

matrix of cartilage. HA provides a native 

microenvironment for mesenchymal stem cells 

and can increase functional cartilage formation 

compared to other synthetic hydrogels such as 

polyethylene glycol (PEG) [6, 7]. 

HA has several biomedical applications due to 

cellular interactions and its presence and role in 

the extracellular matrix of many tissues [8]. 

Among the applications mentioned for HA are 

drug delivery and tissue bulking [6, 9]. 

One of the significant goals of TE approaches 

with HA hydrogels is cartilage tissue repair [10]. 

Since HA is abundant in healthy cartilage (such as 

the matrix around cartilage cells) and is involved 

in cartilage homeostasis, it has been extensively 

studied as part of hydrogels and scaffolds for 

cartilage repair [11, 12]. Mesenchymal stem cells 

enclosed in HA-based hydrogels show higher 

expression of cartilage markers in both in vitro 

and in vivo than those compared to ineffective 

PEG hydrogels [13]. 

CTE is a promising way to repair cartilage tissue 

damage. The most common methods used in CTE 

include the proper combination of granule cells, 

biocompatible scaffolds, and biological agents 

that support the formation of new cartilage [14]. 

Success in cartilage tissue regeneration depends 

on individual or combination characteristics of 

cells, biological agents, and scaffolding [15]. We 

investigated appropriate cells and biological 

agents and a convenient scaffold for CTE. We 

also studied HA scaffolds and HA-based 

composite scaffolds in CTE and cells and growth 

factors used with this scaffold to induce and 

enhance chondrogenesis. 

Cells in CTE  

Chondrocytes are the most common cells used in 

CTE. Besides, they play an essential role in 

cartilage regeneration. On the other hand, stem 

cells can achieve self-renewal and differentiate 

into multiple lineages. They can be taken from 

donor cartilage such as the meniscus, the nose, 

and the trachea. They can construct, maintain, and 

regenerate cartilage tissue in vitro [16]. 

Autologous cartilage is difficult to access, and the 

cells collected from the patient's joints are 

relatively inactive. Chondrocyte proliferation in 

monolayer culture leads to disintegration and is 

presented as decreased proteoglycan synthesis 

and type II collagen expression and type I 

collagen overexpression [17]. Young donor 

chondrocytes are more metabolically active and 

have higher chondrogenic potential and fast 

 [
 D

O
I:

 1
0.

18
50

2/
ijm

l.v
9i

1.
90

81
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

l.s
su

.a
c.

ir
 o

n 
20

22
-0

8-
28

 ]
 

                             2 / 11

http://dx.doi.org/10.18502/ijml.v9i1.9081
https://ijml.ssu.ac.ir/article-1-411-en.html


IN VITRO STUDY OF HYALURONIC ACID-BASED SCAFFOLDS  

 

8 International Journal of Medical Laboratory 2022;9(1): 6-16. 

expansion compared to cells taken from adult 

donors [18, 19]. To dominate and control the 

limited storage of primary cells, the application of 

multipotent stem cells is recommended, which are 

mainly isolated from bone marrow, adipose 

tissue, and before implantation [20, 21]. Adult 

mesenchymal stem cell (MSC) sources are 

available in various tissues, including trabecular 

bone, bone marrow, deciduous teeth, periosteum, 

articular cartilage, adipose tissue, muscle, and 

synovial membrane [21-23]. 

Growth factors in CTE  

Growth factors and chemical stimuli such as 

transforming growth factor-β (TGF-β) conversion, 

insulin such as growth factor-1, and bone 

morphogenic protein-6 are required [24]. 

However, using the chemical inducers mentioned, 

the researchers found that neo-cartilage tissues 

were not similar to native hyaline cartilage due to 

having more type I collagen and type X collagen 

and less type II collagen. Therefore, researchers 

are trying to find an alternative to MSC induction 

to produce better quality cartilage tissue and lower 

costs [25]. 

Scaffolds in CTE 

Scaffolds acting as the artificial extracellular 

matrix (ECM) also have pivotal roles in 

determining cartilage reconstruction. The scaffold 

is a three-dimensional construct in which cells can 

attach and migrate. Fibers, meshes, sponges, and 

hydrogels scaffolds have been administered as 

carriers for chondrocytes and stem cells in CTE. 

The ideal scaffold should be biocompatible, non-

toxic, non-stimulatory for inflammatory cells and 

non-immunogenic [26]. It must also have specific 

characteristics that lead to cell adhesion, 

proliferation, differentiation into specific 

phenotypes such as mechanical support of CTE 

and porosity, leading to the release and exchange 

of nutrients and the excretion of waste products 

[26, 27]. In addition, scaffold components must be 

resistant to decay at physiological pH and body 

temperature, be biodegradable and allow new 

cartilage to regenerate and replace the original 

structure [28]. A suitable scaffold for CTE is a 

scaffold with high porosity and the ability to 

connect pores to pores. High porosity provides a 

good environment for cell adhesion, growth,  

and regeneration. The interconnected porous 

organization facilitates cell migration, exchange 

of nutrients and physiological gases into the cell, 

and metabolic of cells [29]. Mechanical 

stimulation can certainly boost the mechanical 

features of CTE [30]. CTE studies have focused 

on two loading regimes: direct or unbound 

compression and hydrostatic pressure. Direct 

dynamic compression applied to cartilaginous 

scaffolds typically increases the production 

and/or proliferation of the ECM and improves the 

compressive properties of the engineered tissue 

[31]. 

The main goal of TE is to create implant-like 

structures that can replace damaged tissue. 

Scaffolds with good porosity provide a suitable 

environment for cell migration, cell proliferation, 

and other activities [32-34]. 

HA as scaffold for CTE 

HA also known as hyaluronan, is a linear, anionic, 

non-sulfated GAG with a combination of 

saccharide gland units: β-1,4-D and β-1 

glucuronic acid, 3 - N -acetyl- D-glucosamide 

[35]. It is a high molecular weight (105-107 

kDa) natural biopolymer that can contain 5000-

30000 sugar molecules in the backbone 
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structure [36]. HA is one of the main 

components of ECM and cartilage tissue. HA is 

synthesized in the inner cell membrane by the 

synthesis of hyaluronan. After synthesis, it is 

transferred to the ECM through the membrane 

after 3-5 days, where it is destroyed by the 

family of hyaluronidase enzymes [37]. HA is 

found in the ECM of all living tissues, with 

varying concentrations and molecular weights, 

and is more prevalent in mechanically loaded 

tissues such as cartilage, dermis, and vocal 

folds [38, 39]. Due to many carboxyl and 

hydroxyl groups, HA is a highly hydrophilic 

compound that creates a gel-like structure as a 

result of the intermolecular interaction of 

macromolecules in the aqueous medium [40]. It 

acts as a protection against the penetration of 

microorganisms and toxic agents [41], lubricant 

due to its viscoelastic properties in the synovial 

liquid [42], and the transparent aqueous 

solution is a filler of eye structures [43]. HA is 

commonly known to play an essential role in 

cell division and migration, angiogenesis, 

wound healing, and tissue regeneration, and its 

effects are related to molecular weight [44]. 

Due to its biocompatibility, biodegradation, and 

chemical modification, HA is of potential 

interest in the TE field [45]. The use of cells, 

scaffolds, and growth factors promote tissue 

regeneration, which can overcome the 

development of autologous and allogeneic 

transplant-related immunological responses 

[21]. HA can interact with stem cell surface 

receptors, transmit signals within the cell, and 

affect cell activity, such as proliferation, 

survival, motility, and differentiation [45]. In 

various studies of HA and HA-based materials 

such as biological scaffolds and injectable 

hydrogels, in vitro and in vivo tests have been 

used that show positive results for tissue 

regeneration. HA does not promote cell 

adhesion, but it can be modified by motifs such 

as Arginine-Glycine-Aspartic Acid (RGD) to 

increase cell attachment [46]; HA is a polymer 

of disaccharides composed of repeating units of 

β‐1,4‐d‐glucuronic acid and β‐1,3‐N‐acetyl‐d‐

glucosamine (Fig. 1) [47]. One of the unique 

properties of hyaluronic acid is its rheological 

property, which is also observed in low 

concentrations, characterizing the intertwined 

chains of this hydrogel (Fig. 2) [48]. The 

binding of HA can be divided into two 

incomplete and complete groups, which causes 

HA to form a polymer network by covalent 

bonding with the interfaces and is insoluble in 

water by forming a polymer which is due to the 

complete bonding. Incomplete bonding of part 

of the covalent bond of HA molecules is 

stimulated, and a small amount of water 

solution remains (Fig. 3) [49]. 

HA composite hydrogels consisting of two or 

more natural/synthetic biopolymers have the 

advantages of biopolymers, while they enhance 

some of the disadvantages through improved 

biodegradation and adjustable mechanical 

strength. Using HA and modified several 

methods and other covalent bonding materials, 

various hybrid hydrogels have been increased 

for administration in CTE [45]. 

 

 [
 D

O
I:

 1
0.

18
50

2/
ijm

l.v
9i

1.
90

81
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

l.s
su

.a
c.

ir
 o

n 
20

22
-0

8-
28

 ]
 

                             4 / 11

http://dx.doi.org/10.18502/ijml.v9i1.9081
https://ijml.ssu.ac.ir/article-1-411-en.html


IN VITRO STUDY OF HYALURONIC ACID-BASED SCAFFOLDS  

 

10 International Journal of Medical Laboratory 2022;9(1): 6-16. 

 

Fig. 1. The disaccharide repeat unit of hyaluronic acid  

 

Fig. 2. The morphology of hyaluronic acid (RESTYLANE®) using scanning electron microscopy [48] 

 

 

Fig. 3. The gross view of cross-linked hyaluronic acid using BDDE at the concentration of 0.8% [49] 

 

Fig. 4. a and b) Scanning electron microscope micrograph of single-

layered hyaluronic acid -based scaffolds with hexagonal patterns 

reproduced with permission and c) hyaluronic acid -based scaffold 

produced from bioprinting [50] 

 [
 D

O
I:

 1
0.

18
50

2/
ijm

l.v
9i

1.
90

81
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

l.s
su

.a
c.

ir
 o

n 
20

22
-0

8-
28

 ]
 

                             5 / 11

http://dx.doi.org/10.18502/ijml.v9i1.9081
https://ijml.ssu.ac.ir/article-1-411-en.html


A. Rajabi et al. 

 

International Journal of Medical Laboratory 2022;9(1):6-16. 11 

 

The purpose of this study is to review the effect 

of HA hydrogels as a scaffold to help repair 

cartilaginous lesions. Scientific Information 

Database (SID), MEDLINE, PubMed, OVID, 

and Scopus databases from 2010 to 2021 were 

used for this study. 

Mechanical properties of HA 

HA undergoes multiple degradation procedures 

because of hydrolysis and enzymatic hydrolysis 

by naturally arising hyaluronidase. Non-

enzymatic reactions can degrade HA. These 

include acid and alkali hydrolysis, ultrasonic 

decomposition, thermal decomposition, and 

oxidant degradation [51]. Achieving 

mechanical properties is important in the design 

of HA-based hydrogels. In principle, they must 

have ECM-like mechanical properties in 

normal tissues, be sufficiently resistant to 

enzymatic and non-enzymatic degradation, and 

not deform against the compressive forces of 

the surrounding tissues. The mechanical 

properties of artificial substrates in vitro 

environments significantly influence some cell 

functions such as adhesion, proliferation, 

migration, and differentiation [52]. Due to 

disadvantages such as hydrophilic nature and 

lack of mechanical integrity, HA needs 

chemical modification and cross-linking to 

change it for CTE applications [53, 55]. In order 

to control the degree of degradation and 

improve its mechanical properties, in designing 

HA-based scaffolds for cartilage tissue, various 

strategies such as cross-linking or using a 

composite structure to create a stable material 

are used [53, 54].  

The results of the studies are summarized in 

Table 1. 

 

Table 1. Hyaluronic Acid scaffolds in cartilage tissue engineering 

Author Year Scaffold Type 
Growth 

Factor 
Cell Outcome 

Yuan et al. 

[55] 
2015 HA+ collagen 

chondrogenic 

medium + 

icariin 

Rabbit 

chondrocytes 

Expression of sox9, aggrecan, collagen type II 

genes from seed cartilage is increased. 

Production of glycosaminoglycans and 

collagen type II was much higher in HA-Ica/ 

collagen hydrogels. 

Mondal et al. 

[56] 
2016 HA+ divinyl sulfone 

chondrogenic 

medium 

Adipose-

derived stem 

cells 

Cytotoxicity analysis showed that all 

hydrogels are cytotoxic and can be used to 

deliver AMSCs. Hydrogels have been shown 

to aid in forcing various AMSC differentials, 

and Thoms may be potential support in 

repairing articular cartilage in osteoarthritis. 

Chen et al. 

[57] 
2016 

Glucosamine in 

gelatin/HA cryogel 

chondrogenic 

medium 

Rabbit  

articular 

chondrocytes 

Cryogel scaffolds containing 9% glucosamine 

showed better efficacy in maintaining 

cartilage phenotype by affecting cell 

proliferation increasing the secretion of GAGs 

and COL II. 

Mahapatra et al. 

[58] 
2016 

Alginate + Hyaluronic 

acid + Collagen type I 

(Alg-HA-Col) 

chondrogenic 

medium 

Rat articular 

chondrocytes 

The mRNA levels of chondrodite phenotypes, 

including SOX9, type II collagen, and 

aggregates, are significantly regulated when 

cells are cultured in Alg-HA-Col gel 

compared to those cultured in Alg-HA be. 

The secretion of glycosaminoglycan sulfate, a 
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specific cartilage matrix molecule, was 

observed in collagen composite hydrogels. 

Kim et al. 

[59] 
2017 

Oxidized hyaluronate + 

glycol chitosan 

chondrogenic 

medium 
ATDC5 cells 

These hydrogels are well adapted to 

physiological conditions and can act as an 

injectable cell transport system in CTE. 

Amann et al. 

[60] 
2017 HA 

chondrogenic 

medium 

Human 

articular 

chondrocytes

/hADSC 

Hyaluronic acid stimulates the differentiation 

of collagen from collagen hydrogel 

supplementation in a dose-dependent manner. 

1% HA showed the best results 

La Gatta et al. 

[61] 
2017 

Hyaluronan+lysine 

Methyl-ester cross-

linking 

chondrogenic 

medium 

Human 

articular 

chondrocytes 

Primary human chondrocytes cultured 

hydrogels are viable and maintained in their 

lineage. They also secrete cartilage-specific 

matrix proteins. These scaffolds are promising 

candidates for CTE. 

Liu et al. 

[62] 
2018 

Glycol 

chitosan/oxidized 

hyaluronic acid 

And  

Glycol 

chitosan/oxidized 

hyaluronic acid+ ECM 

chondrogenic 

medium 
BMSCs 

To evaluate chondroinductivity induction of 

ECM in vitro, BMSCs were compared in S1 

(G-CS/OHA) and S3 (G-CS/OHA/ECM 2-

weight) hydrogels. Higher levels of 

glycosaminoglycans (GAG) and type II 

collagen (COL II) were accumulated in the S3 

hydrogel. 

Lin et al. 

[63] 
2019 Methacrylate gelatin 

chondrogenic 

medium 

human 

BMSCs 

mGL/mHA with a ratio of 9: 1 (٪, w/v) leads 

to the lowest hBMSC hypertrophy and the 

highest glycosaminoglycan production, with a 

slight increase in the total volume of the 

structure. 

Sharifian et al. 

[45] 
2019 

HA + Fibrin + 

Polylactic acid-

polyglycolic acid 

chondrogenic 

medium 
hADSCs 

poly(lactide-co-glycolide)/fibrin/HA 

stimulates cartilage production in hADSCs. 

Decreased hypertrophic markers and 

increased characteristic markers of hyaline 

cartilage were observed in hydrogels. 

Jooybar et al. 

[64] 
2019 HA-tyramine (HA+TA) 

chondrogenic 

medium + 

platelet lysate 

Human 

mesenchymal 

stem cells 

Platelet laser materials have a significant 

function in supporting human mesenchymal 

stem cells (hMSCs), acting like cell binding, 

viability, and proliferation in the three-

dimensional hydrogel. When placed in a 

cartilaginous differentiation medium, hMSCs 

produce hyaline cartilage produced by HA-

TA. 

Wang et al. 

[65] 
2019 polypeptides 

chondrogenic 

medium 

Rabbit 

BMSCs 

Adhesion and proliferation were represented, 

and an experimental study of BMSC 

demonstrated that the PAP-

3SF/6.5COL/0.5HA scaffold had good 

biocompatibility. 

Ren et al. 

[66] 
2020 

Maleimide-modified 

hyaluronic acid+ 

collagen mimetic 

peptide (GPO)8-CG-

RGDS 

chondrogenic 

medium 

+matrix 
metalloproteinase  

Bone 

mesenchymal 

stem cells 

A combination of CMP with an MMP-

sensitive peptide can have the possibility to 

differentiate mesenchymal stem cells into 

cartilage and prevent the hypertrophic 

phenotype throughout differentiation. 

Tsanaktsidou et al. 

[67] 
2020 

Methacrylated 

hyaluronic acid 

(MeHA)+ chondroitin 

sulfate  

chondrogenic 

medium + 

matrix 
metalloproteinase 

human 

mesenchymal 

stem cells 

Methacrylated hyaluronic acid and 

chondroitin sulfate hydrogels have been 

developed to create an environment conducive 

to the growth and proliferation of human 

mesenchymal stem cells and promote their 

differentiation from tubular phenotypes, even 

if grown in an expansion medium. 

HA= Hyaluronic acid; AMSCs= Adipose tissue-derived mesenchymal stem cells; hBMSCs= human bone marrow 

mesenchymal stem cells; CTE= Cartilage tissue engineering; ADSC= Adipose derived stem cells; BMSC= 

Bone marrow stem cell  
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Conclusion and future trends 

Although an extensive range of surgical 

methods is accessible to treat cartilage injuries 

and be prosperous in short-term and long-term 

follow-up, none of them are qualified to fully 

return the activity and construction of 

damaged cartilage to its original state. HA is a 

promising bright spot to help reduce side 

effects. Its effectiveness is due to many 

practical methods, including lubrication, anti-

inflammatory effects, and cartilage protection. 

HA treatment demonstrates great potential that 

we hope will be identified with further 

research. Further research is needed to obtain 

a specific HA molecular mass to achieve 

clinical efficacy and expand its applications to 

complete control of the disease and its 

complications. 

Although the widespread use of HA hydrogels 

is important in biomedical applications, the 

effect of HA on cellular behavior, especially 

through cell surface receptors such as CD44, 

has been poorly studied. We reviewed articles 

that examined hyaluronic acid scaffolds for 

cell differentiation into cartilage and their 

effect on surface receptors. 

HA adhesion has a large effect on the  

hMSC response, leading to increased cell 

proliferation, proliferation, and the formation 

of focal adhesions. HA parameters have been 

shown to affect hMSC cartilage formation, as 

seen through gene expression profiles, 

potentially by activating cytoskeletal 

organization and cell ability. HA fibrous 

hydrogels are a promising alternative to non-

fibrous hydrogels for regenerative strategies 

that can be used in the future. HA can direct 

articular cartilage. Combining this material 

with other natural and synthetic scaffolds has 

been shown to have cartilage induction 

capabilities. HA supports the migration, 

survival, and differentiation of stem cells. HA 

supports the proper formation of the matrix by 

differentiating stem cells to become articular. 

It suggests that if used in vivo, such a device 

can be integrated into a joint defect site and 

healed. 

Nevertheless, it is necessary to have 

appropriate molecular signals to support the 

repair and healing of joint lesions. Synergistic 

growth factors must be added to maintain and 

improve the induction of regenerative articular 

cartilage, thus preventing fibroids from 

returning to the cartilage or endochondral 

ossification. Under these circumstances, the 

HA matrix with other scaffolds could be a 

viable alternative to promote better 

regeneration of articular cartilage. 
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