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Epigenetic changes play an essential role in cancer pathogenesis. It has been 

established by next-generation sequencing that more than 50% of the human 

cancers carry mutations in mechanisms involved in the organization of the 

chromatin and epigenetic regulations. DNA methylation is among the most 

common epigenetic changes in leukemia. In contrast to DNA mutations which are 

passively inherited from DNA replication, epimutations, for example, the 

hypermethylation and epigenetic silencing of tumor suppressor genes, must be 

actively maintained because of being reversible. Actually, the reversibility of 

epimutations by small-molecule inhibitors provides the basis for the use of such 

inhibitors in new cancer therapy strategies. However, DNA methylation 

mechanism and its role in leukemia are not fully understood; there are some 

serious concerns about the use of these drugs. In this study, we will review the 

mechanisms of DNA methylation and the genes that are methylated in leukemia. 

Moreover, new interesting findings of the epigenetic changes causeed by adult  

T-cell leukemia/lymphoma have been fully discussed.  
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Introduction 

The science of epigenetics is the study of 

inherited changes in phenotype or gene 

expression [1]. Mechanisms of epigenetic 

regulation in mammals contains DNA 

methylation, post-translational modification of 

histones, chromatin remodeling, micro-RNA 

and long noncoding RNAs [2]. Aforementioned 

mechanisms play a critical role in the 

regulation of the molecular processes such as 

transcription, replication, repair, and RNA 

processing. DNA methylation is commonly 

disrupted in diseases such as cancer [3]. Genes 

that are hypermethylated in cancers include 

those involved in the cell cycle (P14ARF, Rb, 

p15INK4a, and p16INK4a), DNA repair-related 

genes (BRCA1, MGMT) and Apoptosis-related 

genes (DAPK, TMS1) [4]. Understanding the 

underlying mechanisms involved in the 

regulation of the epigenetic can be a great help 

in the diagnosis and treatment of several 

diseases. In general, DNA methylation tends  

to inhibit transcription [5]. In cancers, 

generally, tumor suppressor genes tend to be 

hypermethylated and oncogenes tend to be 

hypomethylated [6]. Many drugs have been 

designed based on changes in epigenetic 

mechanisms five of which are successful in 

obtaining Food and Drug Administration 

approval including Azacitidine (Vidaza), 

Decitabine (Dacogen), Belinostat (Beleodaq), 

Panobinostat (Farydak), Romidepsin (Istodax), 

and Vorinostat (Zolinza) [7]. Interestingly, all 

of them treat the diseases related to leukemia 

and show the importance of this therapeutic 

approach in leukemia treatment. In this article, 

we will review recent findings on the role of 

DNA methylation in leukemia progression.  

Methylation mechanism 

DNA methylation has been found in the 

eukaryotic and prokaryotic genome being 

involved in various biological processes 

including gene silencing, X chromosome 

inactivation and imprinting [8]. Methylation 

occurs in dinucleotide cytosine with 

transmitting methyl group of s-adenosyl 

methionine to position 5-cytosine by enzyme 

DNA methyltransferase [9]. CpG islands are 

often located in the promoter and the first exon 

of genes [10]. In mammals, DNA methylation 

occurs almost exclusively in CG dinucleotides 

and is estimated to occur at ~70–80% of CG 

dinucleotides all over the genome [11]. Of the 

approximately 28 million CpGs in the human 

genome, 60% to 80% are methylated in somatic 

cells [12]. Methylation of CpG islands, 

specifically those islands colocalized with 

promoters or other regulatory regions, is usually 

related to gene repression [13]. Methylation in 

frequent regions such as centromeres is 

significant for chromosomal stability [14] and is 

also likely to suppress the expression of 

transposable elements thereby having a function 

in genome stability [15]. Mammals have 3 

types of DNA methyltransferase (DNMT): 

DNMT1, DNMT3a, and DNMT3b. DNMT1 is 

the most greatly DNMT in cells and act is as the 

principal maintenance methyltransferase to 

methylate hemimethylated DNA after DNA 

transcription and preserves parental DNA 

methylation templates in daughter cells. In 
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contrast, DNMT3a and DNMT3b act as de 

novo methyltransferases to methylate entirely 

unmethylated CpG sites [16]. Identification of 

the exact role of DNMT3A in controlling the 

expression of the genes involved in 

hematopoiesis is an important issue in this 

background since the decreased or increased 

activity of this enzyme causes irreversible 

complications in myeloid precursors as well as 

the incidence of malignancy [17]. 

DNA methylation in leukemia 

Myeloid leukemia 

Myeloid leukemia includes acute, chronic  

and myelodysplastic syndromes [18]. Acute 

myeloid leukemia (AML) is one of the most 

common leukemias involving many countries. 

Chronic myeloid leukemia (CML), which is 

indicated by t (9; 22) (q34;q11)/ BCR-ABL and 

patient treated with imatinib, can survive for 

many years [19]. However, a number of 

patients are resistant to this drug, and this 

indicates the role of other gene changes in 

addition to t (9; 22) (q34;q11) [20]. BCR-ABL 

in these patients and myelodysplasia syndromes 

have dysplasia changes and a lot of patients 

ultimately get acute leukemia [21]. Here  

we have mentioned some of the genes that  

are being methylated in these disorders. 

Genetic defects and also hypermethylation 

can contribute to the initiation and 

maintenance of AML. Hypermethylation of 

tumor suppressor genes is a commonly 

deregulated mechanism in AML and CML [22].  

Acute myeloid leukemia 

The E-cadherin gene (E-cad) is located on 

chromosome 16q22.1 and is often named a 

‘‘metastasis suppressor’’ gene because the  

E-cadherin protein can suppress tumor cells 

invasion and metastasis [23]. E-cadherin 

expression is necessary for erythroblast and 

normoblast maturation. Cadherin gene 

hypermethylation has been detected in DNA of 

78% of patients with leukemia, containing both 

acute and chronic types (AML, Acute 

lymphocytic leukemia (ALL), and chronic 

lymphoid leukemia (CLL) actually both  

alleles of the E-cadherin gene are often 

hypermethylated [24]. 

CXXC5 is located on 5q31.2, a region 

recurrently deleted in AML with del (5q) [25]. 

CXXC5 mRNA was down-regulated in AML 

with MLL rearrangements, t (8;21) and GATA2 

mutations as a mechanism of CXXC5 

inactivation [26]. Patients with CXXC5 

expression under the medial level had a lower 

relapse rate and better overall survival, of 

course, regardless of cytogenetic risk groups 

and known molecular risk factors. Lower 

CXXC5 expression was associated with up-

regulation of cell cycling genes and co-down-

regulation of involved genes in leukemogenesis 

(WT1, GATA2, MLL, DNMT3B, RUNX1). 

CXXC5 inhibit leukemic cell proliferation and 

Wnt signaling and impress the p53-dependent 

DNA damage response [27]. Epigenetic 

modifications, such as hypermethylation DNA 

as well as transcriptional regulation by factors 

like GATA2 and WT1 might contribute to 

aberrant CXXC5 expression in AML [28].  

Metallothionein III (MT3) is a tumor inhibitor. 

MTs have been proposed to play significant 

roles in protecting against DNA damage, 

apoptosis and oxidative stress [29]. 
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Overexpression of MT3 may inhibit 

proliferation and stimulate apoptosis in 

AML cells. Epigenetic inactivation of MT3 

via promoter hypermethylation has been 

detected in both AML cell lines and 

pediatric AML samples. Patients with 

methylated MT3 have displayed lower levels 

of MT3 expression compared to those with 

unmethylated MT3 [30]. 

In AML cells, the EphB1 transcript was 

reversely correlated with EphB1 promoter 

methylation [31]. The presence of EphB1 

allowed EfnB1 ligand-mediated p53 DNA 

binding, leading to the recovery of DNA 

damage response cascade by the activation of 

ATR, Chk1, p53, p21, p38, CDK1tyr15, and 

Bax, and down-regulation of heat shock protein 

27 and Bcl2. Comparatively, the reintroduction 

of EphB1 expression in EphB1-methylated 

AML cells increased the same cascade of  

ATR, Chk1, p21, and CDK1tyr15, which 

consequently induced programmed cell death. 

Interestingly, in pediatric AML, EphB1 peptide 

phosphorylation and mRNA expression are 

actively suppressed, and a considerable 

percentage of the primary AML has EphB1 

promoter hypermethylation [32]. 

GATA-1 and PU.1 are two significant 

hematopoietic transcription factors that 

mutually inhibit each other in progenitor cells to 

direct entrance into the erythroid or myeloid 

lineage, respectively. PU.1 is controlled during 

myelopoiesis by binding to the distal URE 

enhancer whose deletion leads to AML. 

Moreover, GATA-1 together with DNMT1 

mediates the suppression of the PU.1 gene 

through the URE. Suppression of the PU.1 gene 

includes both DNA methylation at the URE and 

its histone H3 lysine-K9 methylation and 

deacetylation as well as the H3K27 methylation 

at extra DNA elements and the promoter [33]. 

Chronic myeloid leukemia 

The SHP-1 gene is situated on human 

chromosome 12p13 and is a non-receptor  

type protein-tyrosine phosphatase negatively 

adjusting growth-promoting signaling molecules 

[34]. Up-regulated DNMT1 may contribute to 

the disease development in CML by inducing 

improper hypermethylation of SHP-1 promoter. 

Decreased expression of SHP-1 may play an 

essential role in the progression of CML to blast 

crisis [35]. 

The human Homeobox (HOX) gene regulates 

the progression process, hematopoietic 

differentiation, and leukemogenesis. Silencing 

of HOX genes by DNA methylation is thought 

to disrupt the normal progression of blood  

cells and therefore be involved in leukemic 

transformation [36]. Increased epigenetic 

silencing of potential tumor inhibitor genes 

correlates with disease development in some 

CML patients treated with Imatinib and  

this suggests relevance between epigenetic  

silencing and resistance progression. HOXA4 

hypermethylation is related to a higher risk  

for Imatinib resistance [37]. Another study 

indicated HOXA4 promoter hypermethylation 

in CLL and AML [38]. The repression of 

HOXA4 expression by hypermethylation 

induced gene silencing can be one of  

the potential mechanisms in BCR-ABL 

independent pathway inducing Imatinib 

resistance in CML patients [39]. 
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PU.1 is a member of Ets family transcription 

factor which plays a principal role in the 

progression of lymphoid and myeloid cells  

and regulation of expression of lineage-

specific genes [40]. Down-regulation of PU.1 

expression at the mRNA and protein levels has 

shown a relation with aberrant methylation. 

Aberrant methylation has shown the promoter 

region of transcription factor PU.1 in CML 

patients both in chronic phase and blast crisis 

phase. Methylation of the proximal promoter of 

the ABL1 oncogene is a prevalent epigenetic 

alteration associated with the clinical 

development of CML. ABL1 methylation  

has showed a majority of colonies from blast 

crisis, but not chronic-phase CML. Specific 

methylation of the Ph-associated ABL1 allele 

accompanies clonal progression in CML [41]. 

Myelodysplastic syndrome  

Glutathione peroxidase 3 (GPX3) located on 

the 5q23, plays an important role in preventing 

oxidative damages by reducing extra reactive 

oxygen species [42]. GPX3 methylation has 

shown 15% of MDS patients which is lower 

than AML patients. GPX3 methylated patients 

had a higher frequency of DNMT3A mutation 

and have shown remarkably shorter overall 

survival. GPX3 methylation is associated  

with incompatible prognosis and leukemia 

transformation in MDS [43]. 

Suppressor of cytokine signaling-1 (SOCS-1) is 

a significant factor in the transition of 

extracellular cytokine signals to the nucleus 

and adjust cellular processes involved in cell 

growth, differentiation and transformation 

[44]. Aberrant methylation of SOCS-1 induces 

transcriptional silencing in myeloid cells and 

the activity of the Janus kinase/STAT pathway 

and expression  BCL2L1 increases [45]. 

Myelodysplastic/Myeloproliferative neoplasm 

Characteristics of both groups of myelopro-

liferative diseases and myelo-dysplastic 

syndromes are shown with the increasing 

variability in cell count, cytopenia, and 

morphology of dysplasia. These disorders also 

involve epigenetic changes, including DNA 

methylation listed below. 

Chronic myelomonocytic leukemia (CMML) 

p15INK4b is a regulator of cell-cycle ceased in 

the G1 phase of the cell cycle through the 

inhibition of cyclin-dependent kinase 4 (CDK4) 

and cyclin-dependent kinase 6 (CDK6) [46]. 

Novel small RNAs, including microRNA-29b 

[47] and p15-AS [48], are as regulators of 

p15INK4b expression and p15INK4b DNA 

methylation simultaneous with repressive 

histone modifications. Hypermethylation of 

p15INK4b occurs in more than 75% of the case 

of AML [49]. p15INK4b gene methylation 

occurs mostly in high-risk MDS with an 

increased tendency to advance to blast 

transformation [50]. Aberrant p15INK4b gene 

methylation occurs in up to 58% of the cases  

of CMML and a high degree of methylation  

has demonstrated a great decrease or nearly a 

complete lack of p15INK4b expression. 

Upregulation of all three DNA methyltransferases 

has been detected in CMML with a high degree 

of p15INK4b gene methylation [51]. 

Juvenile myelomonocytic leukemia  

Six genes including BMP4, CALCA, CDKN2A, 

CDKN2B, H19, and RARB  in JMML undergo 

methylation [52] and four genes BMP4, CALCA, 

CDKN2A, and RARB are significantly associated 
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with poor prognosis [52]. Studies have shown 

that DNA hypermethylation is related to poor 

overall survival and a high risk of treatment 

failure [53].  

Lymphoid leukemia 

Lymphoid leukemia has been divided into three 

categories including B-cell leukemia, T-cell 

leukemia, and NK-cell leukemia [54]. The 

acute form of both B and T lineage can be seen 

in both adolescence and childhood. The 

common chromosomal anomalies in pediatric 

ALL include t(12;21)(p12;q22)/ETV6-RUNX1, 

t(1;19) (q23;p13)/ TCF3-PBX1, t(9;22) (q34;q11)/ 

BCR-ABL and t(4;11)(q21;q23)/ MLL-AF4 [55]. 

In general, prognosis in children is better than 

adults, and the rate of relapse in adults is higher 

than that of children [56]. Moreover, DNA 

methylation occurs in these disorders; and we 

explain some of these below. 

CLL is a chronic clonal disorder which is 

characterized by progressive accumulation  

of lymphocytes and clonal B cells arrest 

differential in the naive B cell stage [57]. 

Common cytogenetic abnormalities included 

del (13)(q12.3), del(17)(p13) and trisomy 12 

[58]. Also, DNA methylation occurs in  

these disorders some of which have been 

explained below. 

Adult T-cell leukemia (ATL) is one of the 

important types of lymphoid leukemia which is 

caused by human T-cell leukemia virus type I 

(HTLV-I) [59]. ATL has attracted increasing 

attention because of the new findings in the 

signaling pathways and HTLV-1 caused 

epigenetics alterations [60]. In this subsection, 

epigenetic alterations, chromatin remodel-

ing, transcriptomic alterations, and genomic 

alterations which are caused by HTLV-1 are 

completely covered. 

Acute lymphoblastic leukemi 

P57KIP2 encodes a cyclin-dependent kinase 

inhibitor (CDKI) that belongs to the CIP/KIP 

family and is considered a putative tumor 

suppressor gene [61]. Methylation of a region in 

close proximity to the transcription start 

position of p57KIP2 is related to gene silencing. 

Aberrant methylation of p57KIP2 has been 

observed at initial presentation and at relapse in 

adult ALL and methylation of a cell-cycle 

regulatory pathway involving p73, p15, and 

p57KIP2 has been detected as a subgroup of 

patients with Philadelphia chromosome (Ph)– a 

negative disease with poor prognosis [62].  

Ras-association domain family 1 isoform A 

(RASSF1A) regulates several essential 

biological processes including cell-cycle 

development and apoptosis [63]. P53 connects 

the RASSF1A promoter, recruiting DAXX as 

well as DNA methyltransferase 1 (DNMT1) for 

DNA methylation, which eventually results in 

inactivation of RASSF1A in wild-type p53 

ALL cell and induces overexpression of DAXX 

leading to enhanced RASSF1A promoter 

methylation. p53/DAXX-mediated RASSF1A 

methylation regulates murine double minute 2 

(MDM2) protein constancy in ALL [64]. 

Adult T-cell leukemia  

Kruppel-like factor 4 (KLF4) gene is a cell 

cycle regulator and early growth response 3 

(EGR3) gene is an essential transcriptional 

factor for the excitation of Fas ligand (FasL) 

expression. DNA methylation of KLF4 gene is 

related to its silencing in ATL and EGR3 gene 

is silenced by histone deacetylation rather than 

D
ow

nl
oa

de
d 

fr
om

 ij
m

l.s
su

.a
c.

ir 
at

 1
4:

46
 IR

D
T

 o
n 

M
on

da
y 

S
ep

te
m

be
r 

2n
d 

20
19

http://ijml.ssu.ac.ir/article-1-298-en.html


DNA METHYLATION AND ITS ROLE IN THE DEVELOPMENT OF LEUKEMIA 

 

159 International Journal of Medical Laboratory 2019;6(3):153-165. 

by DNA methylation showing a commensurate 

increase in the methylation density of these 

regions with disease development [65]. 

Polycomb-dependent epigenetic alteration in 

ATL 

NF-κB shows high expression in ATL that 

results from a HTLV-I infection [66]. It has 

been revealed that NF-κB plays several roles in 

proliferation, inflammation, and especially anti-

apoptotic mechanism [67] all of which are 

important in oncogenesis [68]. NF-κB signaling 

can be activated by NF-κB inducing  

kinase (NIK) [69]. NIK can be targeted  

and consequently regulated by miR-31. 

Interestingly, the YY1 binding motif is located 

in the miR-31 gene and causes polycomb 

repressive complex 2 (PRC2) recruiting and 

then suppression of miR-31 expression through 

histone H3Lys27 (H3K27me3) trimethylation. 

PRC2 consists of three core subunits: Eed, 

Suz12, and Ezh2. Hence, by silencing miR-31, 

Ezh2 can indirectly activate NIK and NF-κB 

signaling and lead to apoptosis resistance [70]. 

HTLV-1 oncoprotein Tax is an influential 

activator of Ezh2 [71]. As a result, it can 

suppress many genes including miR-31 and 

KDM family, thus encoding the H3K27me3 

demethylase, by affecting Ezh2 [72].  

The effect of HTLV-1 proteins on chromatin 

remodeling     

It has been shown that HTLV-1 Tax can cause 

chromatin remodeling by interfering with the 

miRNA machinery [73]. miRNA microarray 

analysis has revealed suppression of three 

miRNAs (has-miRs-135b, 149, and 872) from 

nine identified miRNAs for P/CAF, and also 

shown down-regulation in specific miRNAs for 

p300 including hsa-miRs-149, 872, and 873 

after introducing Tax protein [74].  

HTLV-1 can inhibit apoptosis by HTLV-1 bZIP 

factor (HBZ) [75]. HBZ targets FoxO3a and so 

leads to down-regulation of Bim and FasL [76]. 

For inhibiting FoxO3a, two mechanism have 

been shown by Clerc et.al: HBZ interplay with 

FoxO3a and inhibition of phosphorylated 

FoxO3a nuclear export [77]. The first one is a 

more important mechanism associated with 

chromatin remodeling. Apoptosis can be 

suppressed by the LXXLL-like motif of HBZ, 

while interaction with FoxO3a can occur by the 

central domain [78]. Moreover, the interaction 

between LXXLL-like motif and the KIX 

domain of histone acetyltransferase p300/CBP 

has been reported, which results in a decrease in 

the level of histone acetylation. Furthermore, 

HBZ very likely plays an important role in 

CpGs hypermethylation in Bim promoter and 

causes long-term suppression of Bim gene [75]. 

HTLV1 caused transcriptomic alteration   

miRNAs regulate the expression of a variety of 

genes; that's why they can modulate apoptosis, 

cell proliferation, cell-cycle timeline, and 

signaling [79]. To evaluate the effect of HTLV-

1 on aforementioned biological activities, 

miRNA expression in determined ATL cell 

lines was profiled by Yeung et al. They 

indicated up-regulation of six miRNAs and the 

targeting of tumor protein 53–induced nuclear 

protein 1 (TP53INP1) by two of them including 

miR-93 and miR-130b. They concluded that, 

miR-93 and miR-130b can increase cell 

survival and proliferation by TP53INP1 

suppression [80]. It has been established that 

HTLV-1 Tax is associated with metastasis by 
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activating NF-κB signaling. NF-κB can also 

induce Fascin (FSCN-1). FSCN-1 is a 54-58 

kilodalton actin-bundling protein and, on the 

other hand, play an important role in migration 

and metastasis [81]. Collapsin response 

mediator protein 2 (CRMP2) can organize the 

cytoskeleton and has a key role in migratory of 

lymphocyte to the central nervous system [82]. 

The effect of HTLV-1 Tax on a greater 

phosphorylation level and, as a result, higher 

activation of CRMP2 has been revealed by 

Varrin-Doyer el al. Furthermore, they showed 

that the axis of CRMP2/PI3K/Akt is the key 

pathway in increasing lymphocyte migration 

and cytoskeleton organization [83]. In the end, 

all of these results elucidate the aforementioned 

axis having a major role in metastasis. The 

effect of Tax protein on the SDF-1/CXCR4 axis 

activation has also been observed [84]. 

Moreover, the SDF-1/CXCR4 axis was shown 

as a central pathway in the migration of the 

leukemic cells. Therefore, it could be as another 

Tax-based metastasis mechanism [85]. Two 

studies played crucial roles in broadening our 

insight into the effect of the HTLV-1 on the 

interferon and interleukin signaling. In the first 

one, it has been revealed that interferon 

regulation factor 3 (IRF3) can be regulated both 

positively and negatively by two different 

pathways. In a positive pathway, Tax activates 

transforming growth factor-β-activated kinase 1 

(TAK1) and then this kinase induces the 

activation of the TBK1-IRF3 axis and surely 

some IFN-stimulated genes such as CCL5 and 

CXCL10. On the other hand, in the negative 

pathway, the up-regulation of IRF4 can 

suppress TAK1 [86]. In another study, it was 

revealed that Tax-depended NF-κB activation 

can increase the expression of Interleukin-9 and, 

as a consequence, the cell-proliferation in the 

primary ATL cells [87].  

Furthermore, it has been reported that more 

expression of IFN-inducible genes in chronic 

HTLV-1 infection not only fails to eliminate  

the infection but interestingly can cause  

HTLV-1-associated myelopathy/tropical spastic 

paraparesis (HAM/TSP) because they cannot 

down-regulate the Tax protein as a viral 

transcriptional transactivator [88]. HTLV-1 P30 

protein can change the expression of many 

genes. Tylor et al. used microarray analysis and 

showed a 2.5-fold enhancement in the expression 

of 15 genes and a reduction in the expression of 

65 genes [89]. 

HTLV1 caused genomic alteration 

It has been revealed that HTLV1 can cause 

genetic instability in established ATL cell lines 

[90]. In one of the most important studies which 

supports this idea, it has indicated that miR17 

and miR21 targets the DNA-damage effector 

OBFC2A–hSSB2 and these miRNAs can 

themselves be downregulated by HBZ [91]. 

Chronic lymphoid leukemia  

A study has shown that 22 genes undergo 

methylation in CLL patients. These genes 

include SOX11, DLX1, FAM62C, SOX14, 

RSPO1, ADCY5, HAND2, SPOCK, MLL, 

ING1, PRIMA1, BCL11B, LTBP2, BNC1, 

NR2F2, SALL1, GALGT2, LHX1, DLX4, 

KLK10, TFAP2 and APP and has shown that 

IgVH mutational status or zeta-chain associated 

protein-70 expression is not related to particular 

methylation profiles, methylation of LINE and 

APP is associated with a shorter overall 
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survival, and methylation of LINE and SALL1 is 

accompanied by a poor prognosis [92]. 

Diagnosis and prognosis 

There are various methods to detect DNA 

methylation containing methylation- specific 

polymerase chain reaction which can monitor 

the state of methylation of CpG on an island 

[93]. Methylation-sensitive single nucleotide 

primer extension evaluates the types of 

methylation at specific CpG location. 

combined bisulfite restriction analysis 

determines methylation levels in the locus-

specific gene with a small amount of DNA [94]. 

Methylight is a high-sensitivity method that 

detects methylated alleles in the presence  

of more than 10,000 nonmethyl alleles, 

quantitative analysis of methylated alleles, and 

enzymatic regional methylation assay which 

determines the precise size of the methylation 

concentration of the region under study [95]. 

MethylQuant is a method which can determine 

the exact amount of specific cytosine 

methylation in the genome complex and 

reverse-phase high-performance liquid 

chromatography determines 5-methyl cytosine 

levels at low DNA levels [96]. 

Many studies have shown that DNA methyl-

ation can predict clinical outcomes and serve as 

a marker for risk classification. In CLL, DNA 

aberrant methylation is valuable for prognosis 

and treatment. For example, methylation of 

LINE and APP is associated with shorter overall 

survival and methylation of LINE and SALL1 is 

accompanied by a poor prognosis [97], or in 

AML, patients with a high degree of CpG 

methylation pattern have shown a shorter time 

to relapse than low CpG methylation pattern 

[98]. Furthermore, hypomethylation of the 

regulatory region of PBX3 is associated with the 

higher rates of relapse and shorter relapse-free 

survival in AML patients while not associated 

with overall survival [99]. 

Conclusion 

Epigenome and genome are changed by several 

cancers especially lymphoid leukemia and lead 

to numerous drastic phenotypic alterations like 

drug resistance and immune system escape.  

The use of new technologies including next-

generation sequencing for analyses of global 

genomics increases our knowledge about 

lymphoid leukemia and mechanisms involved 

in epigenetic alterations. Understanding the 

epigenetic pathways and DNA methylation 

mechanisms can help us find the Achilles heel 

of the many cancer types. Therefore, a new 

insight was established into the development of 

the drugs that target molecules involved in 

epigenetic alterations. Recent clinical trials 

show that these drugs have great efficacy in 

lymphoid leukemia treatment when used  

with other therapeutic approaches such as 

chemotherapy or especially immunotherapy. In 

spite of the mentioned improvements, the 

available epigenetic drugs have some potential 

risks and develop new innovative epigenetic 

drugs thus requiring more research. Moreover, 

there is a critical need for more clinical trials 

concernung these drugs. 
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