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Candida albicans (C. albicans) is a polymorphic fungus that exists as a
natural flora in the skin and mucosal surfaces of the body. However, under
certain conditions, such as immunodeficiency, mucosal damage, antibiotic
use, and cancer, this fungus can cause superficial and systemic infections.
C. albicans is the most common opportunistic pathogenic fungus in
humans and causes 60% of mucosal infections and 40% of candidemia
cases. Several pathogenic factors have been identified that contribute to the
pathogenic potential of this fungus. Among these factors, we can mention:
hypha production, attachment, and biofilm formation, secretion of
hydrolase enzymes, acquisition of micronutrients, adaptation to oxygen and
nitrogen deficiency conditions, and growth at temperatures above 37 °C.
This review article will investigate the pathogenic factors of C. albicans
and their regulatory factors. For this purpose, articles published in national
and international scientific databases, including PubMed/MEDLINE,
Google Scholar, Elsevier databases, IranMedex, Scopus, SID, and Science
Direct, were used. Keywords such as: “Candida,” “Fungi,” “Pathogenesis,”
and “Virulence” were used to find the articles.
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Introduction

Fungi are a diverse group of eukaryotic

microorganisms that exist in yeast, mold, or a

combination of the two forms as natural flora

in humans, animals, or the surrounding

environment [1, 2]. These microorganisms

have diverse life cycle patterns for metabolism

and cell shape adaptation, enabling them to

adapt to changing ecosystems. However, it is

estimated that there are between 1.5 and 5

million species of fungi; only about 72,000

species have been described, and only a few

hundred of them have been mentioned as

causing human disease. Some fungi, such as

Blastomyces species, coccidiosis, and

paracoccidioides, can cause disease in people

without immune deficiency, and some fungi,

which are called opportunists, such as

Aspergillus, Fusarium, pseudopodium, and

Candida species, mainly cause disease in

people with immune system defects [3]. The

genus Candida was isolated for the first time in

1844 from the sputum of a patient with

tuberculosis. These fungi can metabolize

glucose in aerobic and anaerobic conditions

and grow at 37 °C. In addition to the

environment, these fungi exist as normal flora

in human and animal bodies, and their growth

and reproduction are controlled by the immune

system. In immune system failure, these fungi

can grow on mucosal surfaces or other parts of

the body and cause disease. Candida albicans

(C. albicans), C. glabrata, C. tropicalis,

C. parapsilosis, C. auris, C. lusitaniae,

C. krusei, C. stellatoidae, C. guilliermondii,

C. famata, and C. dubliniensisare the most

common Candida species isolated from

clinical cases [4]. C. albicans is one of the

main causes of superficial infections such as

oral, vaginal, skin, and nail candidiasis, as well

as systemic infections such as spleen, liver,

heart, kidney, central nervous system, and

candidemia [3, 5]. In addition, C. albicans or

other Candida species are thought to be a role

in triggering or aggravating psoriasis and

atopic dermatitis [6-8]. Although an increase

in non-albicans species of Candida has been

observed in recent years, C. albicans is still the

most common cause of candidiasis, especially

candidemia [5]. Epidemiological data show

that the mortality rate of invasive candidiasis

caused by C. albicans is still high, and despite

treatment, it is reported to be close to 40% [9].

C. albicans uses several pathogenic factors

such as the production of hyphae, adhesion,

and invasion, secretion of hydrolase enzymes,

acquisition of micronutrients, adaptation to

oxygen and nitrogen deficiency, and growth at

temperatures above 37 °C to cause mucosal or

systemic disease [3]. This review article will

investigate the pathogenic factors of

C. albicans and its regulatory factors.

In this review, articles published in national

and international databases such as PubMed/

MEDLINE, Google Scholar, Elsevier

databases, IranMedex, Scopus, SID, and

Science Direct with keywords including:

“Candida” “Fungi”, “Pathogenesis,” and

“virulence” were searched and related articles

found during the years 1990-2022 were

reviewed.
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Pathogenic factors in C. albicans

Hypha (mycelium) production

Although the mycelium form of C. albicans

can also be seen in the commensal state in

tissue samples of patients, the predominant

form of this fungus is mycelium. This

phenomenon proves that the transformation of

yeast into mycelium form is one of the

important factors in the pathogenesis of C.

albicans [3]. In addition, it has been shown

that C. albicans strains that cannot produce

hyphae have little pathogenic power. This

indicates that hypha production plays a vital

role in the effective pathogenicity of C.

albicans [10]. The creation of hyphae may be

effective for entering the bloodstream and

creating candidemia [11]. Hyphae formation in

the phagosome can help C. albicans escape

phagocytosis and killing by macrophages [12].

The creation of hyphae plays a role in forming

an optimal biofilm on medical devices and

creating iatrogenic candidemia [13]. Host

temperature, pH, and the availability of

nutrients are environmental factors that play a

role in changing the shape of C. albicans [14,

15]. The way yeast cells and mycelium grows

is different. Mycelium growth mainly occurs

in its tip, but in yeast, it mainly occurs in the

bud and daughter cells and rarely in the mother

cell. Unlike mycelium, which has permanent

vertical growth, growth in yeasts grows

vertically only at the beginning of separation

from the mother cell, and then the growth

becomes isotropic [16]. Cyclins are a large and

diverse group of regulatory proteins in

eukaryotes, each of which prefers specific

substrates of the cyclin-dependent kinase

(CDK) complex. The cyclin subunit

determines which protein is held close to the

CDK and can be converted into a substrate,

while the CDK determines where the substrate

is phosphorylated. Therefore, while CDKs

phosphorylate proteins, cyclins determine the

choice of substrate proteins and the time and

place of intracellular phosphorylation [17].

Cln1 and Cln2 cyclins are expressed in the G1

phase of the cell cycle. These cyclins in the

primary buds of C. albicans cause polarization

of the actin filaments of the cell skeleton to the

bud tip and Vertical growth by concentrating

the activity of GTPase (hydrolyzing guanosine

triphosphate (GTP) to guanosine diphosphate

(GDP) coded by the cdc42 gene in the bud tip

[17, 18]. While in the G2 phase of the cell

cycle, meiotic cyclins change the vertical

growth to isotropic growth by defocusing

cdc42 and polarizing the actin filaments of the

cell skeleton from the tip of the bud [18].

Therefore, the difference in the growth of the

yeast and mycelium states of C. albicans can

be attributed to the difference in the

polarization of actin filaments of the cell

skeleton [19]. In filamentous fungi, the

placement of cell growth in a small area of the

cell surface at the tip of the hyphae requires a

strong polarization of the cell biosynthetic

apparatus, which includes the large-scale

movement of membrane-containing vesicles

and cell wall precursors towards the tip of the

hyphae [20, 21]. This movement depends on

the cytoskeleton’s microtubule and the actin

filaments and is coordinated by a vesicle

organizing center (Spitzenkörper) located

behind the hyphal tip [16]. Rapid exocytosis of
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transferred vesicles increases the length of the

hyphal tip, and this exocytosis must be

balanced with endocytosis to recover extra

membranes and enzymes that participate in

cell wall biosynthesis [22, 23]. It is thought

that the mechanism of hyphal elongation in C.

albicans and filamentous fungi is similar;

however, important differences are seen; For

example, the growth of C. albicans hyphae is

relatively slower and does not seem to require

microtubules [24, 25]. In addition, in the

hyphae of C. albicans, the movement of most

secretory vesicles takes a shorter route than

filamentous fungi [26]. Like other fungi, a

protein complex called polarisome forms a cap

at the growth site of C. albicans hyphae and in

yeast and hyphae-like cells [27]. Compared

with Spitzenkörper, polarisome proteins show

much less turnover [28]. Using the Bni1

protein, polarisome may stimulate actin

polymerization in hyphal tips [16].

Signaling pathways controlling hyphae

production

Hyphae production in C. albicans is controlled

by several signaling pathways:

Cek mitogen-activated protein kinase

(MAPK) pathway

This pathway is activated by factors such as

nitrogen deficiency and cell wall damage [29,

30]. Membrane proteins Sho1, Opy2, and

Msb2 may also play a role in Cek stimulation

[31]. Cyclic adenosine monophosphate protein

kinase A (cAMP-PKA) pathway

In addition to morphology, this pathway plays

a role in growth, glycogen synthesis, energy

metabolism, and mitochondrial activity [32-

34]. This pathway is activated by

environmental stimuli such as serum, N-acetyl

glucose amide (GlcNAc), amino acids, and

carbon dioxide [35-37]. The cellular level of

cAMP is also regulated by phosphodiesterase

and adenylyl cyclase [9] (Fig. 1).

Fig. 1. Signaling pathways controlling hyphae production
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High-osmolarity glycerol (HOG) MAPK

pathway

This pathway can control mycelium

production [9]. Hog1 is activated in high

osmotic pressure, and after being

phosphorylated, it is transferred to the nucleus,

and by affecting the glycerol transporter and

changes in transcription, it prevents the

transformation of yeast into mycelium [9, 38]

(Fig. 1).

Tup1-mediated negative regulatory pathway

Transcription factor Tup1 is a negative

regulator of mycelium production. The

synergistic effect of Tup1, Nrg1, and Rfg1 has

been reported. Tup1 can repress transcription,

and mutants lacking Tupl can efficiently form

hyphae without special induction conditions

[9] (Fig. 1).

The role of pH in the regulation of hypha

production

Acidic pH prevents the transformation of yeast

into mycelium, while alkaline and neutral pH

stimulate the production of hyphae [39, 40]. C.

albicans can regulate the pH of the

environment by metabolizing nutrients [9].

The Rim101 gene plays a role in transmitting

the pH signal and regulating the transcription

of specific pH-dependent enzymes in fungi [9,

41]. Deletion of Rim101 inhibits mycelia

formed in alkaline pH. PHR1 and PHR2 genes

are involved in synthesizing beta 1 and 3

glucan and beta 1 and 6 glucan and are

regulated by Rim101 at different pH. PHR1 is

expressed at pH less than 5.5 and PHR2 at

more than 5.5 [42]. The mutant strains in

PHR1 have incomplete growth in alkaline pH,

and the mutant strains in PHR2 have poor

growth in acidic pH [43].

Regulation of hypha elongation

Ume6, Eed1, and Hgc1 are essential in hypha

elongation [44-46]. Eed1 is necessary for the

expression of Ume6 and plays an important

role in mycelium maintenance [46]. In mutants

lacking Eed1 and Ume6, the growth in the

liquid medium remains in the induction phase,

and the cells cannot continue to grow. In the

stable environment, these mutants grow only

as yeast without mycelium production [47].

Hgc1 plays its role along with Cdc28. Mutants

lacking Hgc1 can only produce very short

germ tubes [48]. The expression of Hgc1 is

dependent on Ume6, and Hgc1 is expressed

in mutants lacking Ume6, but it cannot

persist [49]. It has been shown that the

phosphorylation of Cek1 MAP kinase

increases in mutants lacking RAP1; Therefore,

RAP1 may have an inhibitory role in hypha

production [50] (Table 1).

Ability to adhere and form a biofilm

After the production of hyphae, the ability to

adhere and form a biofilm is among the most

important Virulence factors of C. albicans [9].

Attachment helps the organism to persist in the

host and is, therefore, necessary for the spread

and settlement of the fungus [51]. It is estimated

that biofilm formation is related to 65 to 80% of

microbial infections [52, 53]. 80% of C.

albicans infections are directly or indirectly

related to biofilm formation [54]. The

production of hyphae and the ability to adhere

together with the secretion of proteases and

phospholipases facilitate the invasion of the
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fungus into epithelial cells [51]. C. albicans

have a set of proteins that bind it to host cells,

non-living surfaces, and other microorganisms,

and biofilm formation [55, 56]. Adhesive

molecules called Als (agglutinin-like sequence)

have been studied more than others. These

proteins form a family with eight members,

Als1-7 and Als9 [57]. Als1 is important in

binding to epithelial, endothelial cells, and

biological surfaces [9, 51]. It has been shown

that increasing the expression of this molecule

causes a 125% increase in binding [9]. It has

been shown that Als3 plays an important role in

endocytosis and invasion of host tissues [58-

60]. Only Als1 and Als5 in Al’s family have the

same function as Als3 [61]. Strains lacking

Als5, Als6, or Als7 have normal binding power

but slower growth [62]. Als2, Als4, and Als9

have not been investigated in the laboratory [9].

Hwp1 is another adhesive molecule that plays

an important role in the attachment of

C. albicans to host cells [54]. A synergistic

effect for Als1 and Hwp1 has been reported for

germ tube formation, an essential step for

fungal pathogenesis [62]. It has been shown that

the mutants lacking this adhesive molecule

show less binding power to oral epithelial cells

and also less pathogenic power in systemic

candidiasis in mice [57]. Hwp1 does not seem

to have a role in binding to endothelial cells

[51]. Hwp1 and Als3 cooperate in the formation

of biofilm [63].

The regulation of adherence and biofilm

formation

Bcr1 plays an important role in regulating

C. albicans hyphae adhesion molecules [64].

(Table 1, Fig. 2). Als3 is a key target for Bcr1

action [65]. Hwp1, which is an epithelial

adhesion molecule, is also controlled by Bcr1.

Mutants lacking Bcr1 cannot form a

significant biofilm in the tongue of

immunodeficient mice due to defects in

adherence [66]. The Efg1 gene, which plays an

essential role in hypha production, also plays a

role in C. albicans attachment [61]. This

gene’s expression is influenced by the immune

system. Mutants lacking Efg1 have defects in

cell layer formation on polystyrene surfaces

due to changes in surface protein composition.

In addition, the lack of Efg1 function in some

C. albicans strains, only the formation of

pseudohyphae in solid medium and no growth

in liquid medium are observed. Ywp1 is also

expressed only at the end of the logarithmic

phase of yeast sols and is not found in

pseudohyphae and mycelium. Yeasts with

Ywp1 form only one cell layer, while mutants

lacking this gene can connect and form

biofilm. Therefore, it seems that Ywp1 has an

inhibitory role in the attachment and formation

of biofilm. Sfp1 is another gene that plays an

inhibitory role in the binding of C. albicans

[65]. Increased expression of Als1, Als3, and

Hwp1 and, as a result, increased binding

strength is observed in mutants lacking Sfp1.

Increasing the expression of Sfp1 also

decreases the expression of adhesive

molecules. Sfp1 may exert its role through

Bcr1 and Efg1 and the Rhb1-Tor1 signaling

pathway [67]. CaFEN1 and CaFEN12 are also

involved in adhesion and biofilm formation

through the synthesis of sphingolipids, and the

deletion of these genes inhibits biofilm

formation [65]. It seems that RAP1 has an
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inhibitory role in biofilm formation. It has

been shown that mutants lacking RAP1 form a

stronger biofilm than C. albicans having this

factor [50].

Hydrolase enzymes

Hydrolase enzymes such as: Proteases secreted

aspartyl proteinases (SAPs), lipases (LIPs) and

phospholipases (PLBs) play a role in providing

nutrients for C. albicans through protein

degradation, facilitating penetration and

invasion of host tissues and also evading

immune responses [68, 69]. Among the

hydrolase enzymes, SAPs have been studied

more deeply. C. albicans have 10 genes

(SAP1-SAP10) encoding this enzyme, which

plays an important role in the pathogenesis of

this fungus [68]. It has been shown that

SAP1,2,3 are involved in tissue damage during

superficial infection, and SAP4,5,6 are

involved in tissue damage during systemic

infection [70]. SAPs are also used in

diagnosing systemic candidiasis by the

enzyme-linked immunosorbent assay method

[71]. The key advantage of using SAPs is their

ability to differentiate colonization from

invasive disease [68].

Table 1. Pathogenic factors of Candida albicans and its regulatory genes

Number Pathogenic factor Regulatory genes
1 Mycelium production Ume6،Eed1، Hgc1،Rap1

2 Adherence and formation of biofilm
Bcr1 ، Efg1،CaFEN1 ، CaFEN12, Ywp1،Sfp1
،Rap1

3 hydrolase enzymes
Cph1، Efg1، Tec1، Hog1
Tup1،Mig1، Nrg1

4 Absorption of micronutrients ZRT1-3، ZRC1، Sef1،Sfu1، CRD1
5 Compatibility with different levels of oxygen Ofd1، Nrg1،Ume6
6 Growth in nitrogen deficiency conditions MEP1، MEP2،Ume6 ،Brg1
7 Growth at a temperature higher than 37 °C Hms1، Hsf1

Fig. 2. Candida albicans biofilm gene regulation network
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SAP2 can be used to make a vaccine to

prevent systemic candidiasis in BALB/c mice

[72]. It has been shown that using SAP2

protein conjugated with alum adjuvant has

brought efficient immune protection with a 20-

fold reduction in kidney colonization [68]. The

products of SAP1-8 genes are secreted in the

intercellular space, and the products of

SAP9,10 genes are attached to the cell wall

[73]. Phospholipases are other enzymes that

have four classes of PLBA-D [74]. However,

probably only five members of (PLB1-5) are

involved in the pathogenesis of C. albicans.

The expression of phospholipase B has been

observed in mucosal, digestive, and systemic

infections [75]. Most of the activity of

phospholipase B is related to Plb1, and Plb2

has little activity [76]. The lipase family is

another enzyme comprising 10 members

[LIP1-10] [68]. The expression of LIP5,6,8,9

has been observed in induced peritonitis in

mice [77]. It has been reported that the lack of

LIP8 expression reduced the pathogenicity of

C. albicans in mice [78]. Lipase increases the

secretion of pro-inflammatory cytokine

Interleukin-6 and decreases the secretion of

anti-inflammatory cytokine transforming

growth factor; therefore, lipase seems to play a

role in pathogenesis by causing inflammation

[79].

Regulation of hydrolysis enzymes

SAP gene expression depends on other

pathogenic factors, such as mycelium

production and phenotype change. In

addition, pH, type, stage of infection, and

substrate availability are effective in the

expression and regulation of SAP genes [80].

Biofilm formation is also effective in

regulating the expression of SAP genes; in

this way, SAP5,6,9 are seen more in biofilm

than in planktonic growth [81]. Transcription

factors Cph1 and Efg1 of the MAP kinase

pathway and the cAMP pathway regulate the

production of hyphae and the expression of

SAP4-6 [81, 82]. In addition, it seems that

Efg1 also regulates mycelium-independent

SAP genes because deletion of Efg1 decreases

the expression of yeast-specific SAP1 and

SAP3 proteinases [83]. Transcription factor

Tec1, which is often expressed during

mycelium production, It is involved in the

expression of SAP4–6 [84]. The transcription

factor Nrg1, which Tup1 regulates, can

prevent the expression of SAP5. Tup1 also

regulates transcription factor Mig1 and can

prevent the expression of SAP9. In addition,

the transcription factor Tup1 can inhibit the

expression of SAP6,7 independently of Mig1

and Nrg1 [85]. Therefore, it seems that Efg1,

Cph1, and Tec1 stimulate the expression of

SAPs, and Tup1, Mig1, and Nrg1 prevent the

expression of SAPs [80]. The expression of

lipases and PLB1 can be influenced by

environmental conditions such as

temperature, pH, and nutrients. The

expression of PLB1 is controlled by the

transcriptional inhibitory factor Tup1.

Increased expression of PLB1 has been

observed in mutants lacking Tup1 [86]. The

hog1 protein kinase signal transduction

pathway is also effective in PLB1 expression.
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Mutations in Hog1 decrease PLB1 expression

[87].

Absorption of micronutrients

The absorption of micronutrients by C. albicans

plays an important role in the pathogenesis of

this fungus [88]. The concentration of iron, zinc,

and copper in people is very variable and is

influenced by factors such as diet, gender, age,

general health, and lifestyle [88-90]. To reduce

the growth of microbial agents, the host’s body

tries to keep nutrients away from them. To

neutralize such defense and survive in the host’s

body, C. albicans expresses and regulates several

micronutrient acquisition systems [88].

A) Zinc absorption

C. albicans can absorb free zinc in the

environment, and zinc bound to host proteins by

pH-dependent antigen-1 (Pra1p) [91]. Sap6p can

also provide this micronutrient for the fungus by

binding to zinc in low-zinc environments [92].

Zinc homeostasis in C. albicans is regulated by a

transcriptional activator called Zap1p, which

controls the expression of several genes,

including zinc transporters ZRT1-3 and ZRC1

[93, 94]. (Table 1)

B) Iron absorption

Iron, as a cofactor in metabolic functions, is

needed for the survival of most organisms [95].

In addition, iron is also effective in mycelium

production and the pathogenicity of C. albicans

[96]. Since iron does not exist in free form in

the body, pathogenic microorganisms have

developed complex strategies to obtain this

element [95]. C. albicans use three systems for

iron absorption: hemoglobin absorption, reduced

iron absorption, and siderophore collection [88].

Ferric reductases Cfl1p and Fre10p regenerate

Fe3+ in transferrin to Fe2+ [97, 98]. Then the

reduced iron is transported into the cell through

permeases Ftr1p, Ftr2p, Fth1p, and Fth2p [99,

100]. C. albicans use siderophore transfer

protein [Sit1p] to absorb iron from other bacteria

and fungi [88]. For survival and successful

invasion, C. albicans must be able to absorb iron

from environments with different concentrations.

The concentration of iron in the gastrointestinal

tract is high, and in the blood and tissue is low.

Iron absorption is controlled by two transcription

factors, Sef1 and Sfu1. Sef1 is responsible for

increasing iron absorption in environments with

low concentrations. Iron absorption pathways are

suppressed in environments with high iron [101].

Under high iron conditions, phosphorylated

Sfu1 binds to the Sef1 promoter in the nucleus

and inhibits transcription, and binds to the

Sef1 protein in the cytosol, preparing Sef1 for

degradation. As iron concentration decreases,

Sef1 is phosphorylated and prevents Sfu1

binding. Then, Sef1-P can enter the nucleus

and induce the transcription of genes for the

absorption and utilization of iron [102] (Table

1).

C) Copper absorption

Copper is needed for the effective absorption

of iron and also the function of proteins [88].

C. albicans stimulate the expression of copper

transporter (Ctr1p) by using the Mac1p

transcription factor [103, 104]. Mutants

lacking Ctr1 cannot grow in conditions of iron

and copper deficiency [103]. Increasing copper

concentration can create toxic conditions for

C. albicans; therefore, this fungus activates the

P1-type ATPase copper pump and removes

excess copper from the cell by expressing the
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CRD1 gene [88]. Mutants lacking CRD1 are

sensitive to external sources of copper, silver,

and cadmium [103]. Sur7p plays a role in

morphogenesis, cell wall synthesis, actin

polymerization, and cell wall resistance

against stresses [105-108]. It has been shown

that the deletion of Sur7 increases sensitivity

to copper [109] (Table 1).

Compatibility with different levels of

oxygen

Adaptation to different oxygen levels is

essential for the formation of hyphae and

pathogenicity of C. albicans. Transcription

factor Ume6p increases the length of hyphae

in hypoxic conditions in combination with 5%

CO2. On the other hand, hypoxia with 5%

CO2 decreases the expression of NRG1, which

is a negative regulator of hypha formation

[110]. Ofd1p, part of the 2-oxoglutarate and

Fe2+-dependent dioxygenases (2-OGDD)

enzyme pathway, plays a role in hypha

induction in hypoxic conditions. Ofd1p acts as

an oxygen sensor through Ume6p. Ofd1p

consists of two components, Ofd1N and

Ofd1C. Ofd1C induces the degradation of

Ume6p in high oxygen conditions, and Ofd1N,

by inhibiting Ofd1C in low oxygen conditions,

causes the continuation of Ume6p activity and

the increase in hyphae length [111].

Growth in nitrogen deficiency conditions

Nitrogen deficiency can cause the

transformation of yeast into hyphae [110].

Two ammonium permease genes, MEP1 and

MEP2, are expressed in nitrogen deficiency

conditions and allow growth. These genes

cause the activation of signal transmission

pathways and, as a result, mycelium

production [112]. The Tor1 pathway also

responds by regulating Brg1p and Ume6p in

nitrogen deficiency conditions. This pathway

is a negative regulator of mycelium production.

Inhibition of this pathway causes mycelium

production by activating Brg1p and preventing

the activity of Nrg1p-Tup1p [110]. RHB1 is

another transcription factor that plays a role in

stimulating hypha production through MEP2

under nitrogen deficiency conditions [113-115].

Growth at a temperature higher than 37 °C

C. albicans usually produce mycelium at 37-39

°C [110]. At high temperatures, the inhibition of

Ras1p by Hsp90p decreases, which leads to an

increase in Ras1GTPase activity. Then Ras1p

stimulates cAMP production by Cyr1p, and

finally, the cAMP-PKA pathway is activated to

induce mycelium. Hsp90p appears to suppress

mycelium production mainly through the cAMP-

PKA signaling pathway, as any disruption of the

upstream components of the cAMP-PKA

pathway that blocks PKA-dependent signaling

prevents the induction of hyphal growth [116]. It

has been shown that the genetic deletion of

Hsp90p reduces the severity of systemic disease

in mice [110]. At high temperatures, Hsp90p

regulates mycelium production through the

transcription factors Hms1p and Hsf1p,

independent of the cAMP-PKA pathway

[117, 118].

Conclusion

C. albican’s pathogenicity is a multifactorial

process regulated by a network of pathogenic

factors. Knowledge of the pathogenic factors

of this fungus provides the possibility of

developing better diagnosis and treatment
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methods for infected people. Shape change

seems an important phenomenon in

pathogenesis; therefore, it is necessary to

carefully study the environmental signals and

intestinal metabolites that can play a role

in this shape change. Knowing how to

modify these signals can effectively control

commensalism and prevent pathogenicity.

Targeting the transformation may also be

effective in infection control and treatment.

Targeting other pathogenic factors, such as the

secretion of hydrolase enzymes and the

expression of adhesive molecules, may be a

successful strategy in controlling and treating

infection; of course, there are many ambiguous

points about hydrolase enzymes; for example,

the exact role of Sap9 and Sap10 remains

unknown. The information about the secreted

phospholipases also has fewer details than the

SAP family. Lipases secreted by C. albicans

have also received less attention, with many

ambiguous points about them. The interaction

between host nutrients and the nutrient

absorption systems of fungi can be studied.

Interference in iron, zinc, copper, oxygen, and

nitrogen homeostasis systems may be a

suitable therapeutic strategy.
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