
 
 

O
R

IG
IN

A
L

 A
R

T
IC

L
E

 

 

 

 

 
Volume 13 Number 3 (June 2021) 345-351 

 

Curcumin-meropenem synergy in carbapenem resistant Klebsiella 

pneumoniae curcumin-meropenem synergy 
 

 
Dumrul Gülen, Birol Şafak*, Berna Erdal, Betül Günaydın 

 

 
Department of Medical Microbiology, Tekirdağ Namık Kemal University, Faculty of Medicine, Tekirdağ, 

Turkey 
 

 
Received: May 2020, Accepted: May 2021 

 
ABSTRACT 

 

 
Background and Objectives: The frequency of multiple resistant bacterial infections, including carbapenems, is increasing 

worldwide. As the decrease in treatment options causes difficulties in treatment, interest in new antimicrobials is increasing. 

One of the promising natural ingredients is curcumin. It is known to be effective in bacteria such as Pseudomonas aerugi- 

nosa, Escherichia coli, Burkholderia pseudomallei through efflux pump inhibition, toxin inhibition and enzymes. However, 

because its bioavailability is poor, it seffectiveness occurs in combination with antibiotics. In the study, the interaction of 

meropenem and curcumin in carbapenemase producing strains of Klebsiella pneumoniae was tested. 

Materials and Methods: Thirty-nine Klebsiella pneumoniae isolates, resistant to meropenem, were used in this study. From 

those 15 MBL, 6 KPC, 17 OXA-48 and 1 AmpC resistance pattern were detected by combination disk method. Meropenem 

and Curcumin MIC values were determined by liquid microdilution. Checkerboard liquid microdilution was used to deter- 

mine the synergy between meropenem and curcumin. 

Results: Synergistic effects were observed in 4 isolates producing MBL, 3 isolates producing KPC, 4 isolates producing 

OXA-48, and 1 isolates producing AmpC (totally 12 isolates) according to the calculated FICI. No antagonistic effects were 

observed in any isolates. 

Conclusion: Curcumin was thought to be an alternative antimicrobial in combination therapies that would positively con- 

tribute to the treatment of bacterial infection. The effectiveness of this combination should be confirmed by other in vitro 

and clinical studies. 
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INTRODUCTION 

 
The Enterobacteriaceae family has a broad clin- 

ical picture ranging from simple community ac- 

quired infections to hospital acquired infections (1). 

Increased antimicrobial drug resistance, especially 

 
*Corresponding author: Birol Şafak, MD, Department of 

Medical Microbiology, Tekirdağ Namık Kemal University, 

Faculty of Medicine, Tekirdağ, Turkey. 

Tel: +90-2822505500 

Fax: +90-2822509928 

Email: bsafak@nku.edu.tr 

in infections associated with medical care, leads to 

increased morbidity and mortality (1-3). In recent 

years, the frequency of multiple drug resistance iso- 

lates including carbapenems has been increasing in 

the world (2). The development of multidrug resis- 

tance leads to treatment failure. 

The production of various carbapenemase enzymes 

like beta lactamase are responsible for the majority 

of carbapenem resistance in enteric bacteria. These 

enzymes include class A Klebsiella pneumoniae car- 

bapenemase (KPC), class B metallo-beta-lactamas- 

es (MBL) and class D oxacillinases (OXA-48-like) 

(4). Carbapenemase containing isolates are general- 
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ly resistant to fluoroquinolone, aminoglycoside, and 

co-trimoxazole, as well as becoming resistant to all 

beta-lactam antibiotics. By plasmid mediated tran- 

sition, carbapenemases spread rapidly around the 

world. Globalization, refugee flows, pilgrimage and 

health tourism have significantly contributed to this 

spread. KPC was firstly isolated in the US, then also 

reported in Europe and China. Imipenemases (IMP- 

1) is more common in Japan, while New Delhi metal- 

lo-β lactamase (NDM-1) is more common in Paki- 

stan and India. In many European countries, isolates 

containing OXA-48 cause outbreaks with rapidly 

increasing prevalence (4-7). 

Due   to   its   increasing   frequency,   carbapene- 

mase-producing Enterobacteriaceae (CPE) are mon- 

itored by forming surveillance networks. A 2015 

report by the European Centre for Disease Preven- 

tion and Control (ECDC) highlights an increasing 

frequency of CPE between 2010 and 2015 (1). Addi- 

tionally, when the reports published by the Central 

Asian and European Surveillance of Antimicrobial 

Resistance (CAESAR) network of the World Health 

Organization (WHO) in 2016 and 2017 are observed, 

it is seen that the frequency is increasing by years (3, 

8). In addition to active surveillance, comprehensive 

measures such as hand hygiene, early diagnosis, con- 

tact measures and isolation, environmental cleaning 

and antibiotic management are used to combat CPE 

(9). 

The multiple resistance pattern of antibiotics used 

in treatment increases the interest in newly devel- 

oped antimicrobials. Natural ingredients, which have 

been used in traditional medicine in many countries 

for centuries, are the active substances of modern 

medical drugs (Atropa belladonna, Salixalba, Digi- 

talis purpurea) and show promise in this regard. One 

of these components is curcumin, which is the main 

component of Curcuma longa L. belonging to the 

Zingiberaceae family extracted from the rhizomes 

(10). In addition to supplement, spice and food addi- 

tive, it is also used for medical purposes all over the 

world (11). Curcumin has several molecular targets 

such as various transcriptional factors, inflammatory 

cytokines, enzymes, kinases, growth factors, recep- 

tors, adhesion molecules, and antiapoptotic proteins 

in the tissue (12). Anti-inflammatory, antioxidant, 

anti-venom, anti-HIV, anti-tumor, anti-apoptotic, 

burn wound healing, antiprotozoal, nematocidal, an- 

ti-retroviral, antifungal, antimalarial and antibacteri- 

al effects have been shown (10, 13-17). 

It has been shown in previous studies that curcum- 

in exhibited antibacterial activity: FtsZ protein in- 

hibition involved in prokaryotic cell division; efflux 

pump inhibition in Gram negative bacteria; inhibi- 

tion of PAO1 virulence factors in Pseudomonas aeru- 

ginosa; inhibition of Pet and EspC toxin secretion in 

Enteroagregative Escherichia coli and Enteropatho- 

genic E. coli strains; inhibition of lipase, protease and 

biofilm formation in Burkholderia pseudomallei (18- 

22). However, poor bioavailability and low plasma 

concentration  reduce  its  effectiveness. Antimicro- 

bial activity occurs in combination with antibiotics 

(23). When combined with antimicrobials, synergy 

has been observed with some, while antagonism has 

been observed with others (24, 25). 

In this study, we aimed to demonstrate the interac- 

tion of meropenem and curcumin in carbapenemase 

producing K. pneumoniae strains and its relationship 

with phenotypic resistance pattern. 
 

 
 

MATERIALS AND METHODS 

 
Bacterial strains. Thirty nine meropenem resis- 

tant K. pneumoniae isolates cultured from various 

clinical specimens at Tekirdağ Namık Kemal Uni- 

versity Medical Microbiology Laboratory during 

January 2018 and January 2019 were included in the 

study. Meropenem resistance was determined ac- 

cording to the recommendations of The European 

Committee on Antimicrobial Susceptibility Testing 

(EUCAST).  Accordingly,  those  with  meropenem 

MIC value >0.125, meropenem inhibition zone diam- 

eter <25mm, or meropenem inhibition zone diameter 

25-27 mm of piperacillin resistant isolates were con- 

sidered meropenem resistant. All isolates were stored 

in Mueller-Hinton broth containing 15% glycerol at 

-80°C until tested. Before the study, all isolates were 

passaged to 5% sheep blood agar. 

 
Determination of carbapenemase phenotype. For 

the determination of carbapenem resistance mecha- 

nism, MASTDISCS®  CombiCarba plus (Enterobac- 

teriaceae) disc system (Mast Group, Merseyside, 

UK) was used. It was prepared at a density of 0.5 Mc- 

Farland suspension from a fresh blood agar passage 

made of the strain to be tested. Using the Kirby-Bauer 

disk diffusion test principles, Penem disc 10 µg, Pen- 

em 10 µg + MßL inhibitor disc, Penem 10 µg + KPC 

inhibitor disc, Penem 10 µg + AmpC inhibitor disc 
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and Temosilin + MßL inhibitor disc were placed on 

Mueller Hinton Agar (MHA) plate. After 16-24 hours 

of incubation at 36°C ± 1°C, the diameters of the disc 

zones were interpreted. K. pneumoniae NCTC 13438, 

K. pneumoniae NCTC 13440, K. pneumoniae NCTC 

13442 were used as control strain. 

 
Chemical reagents and media. Curcumin com- 

pound (67% purity) and meropenem (MEM) (≥98% 

purity) were obtained from Sigma Chemicals Co. (St 

Louis, Missouri, USA). They were stored at -20°C 

until extraction as a powder and allowed to warm to 

room temperature before the experiment. 

 
Determination of minimum inhibitory concen- 

trations. For all strains, minimum inhibitor con- 

centrations (MIC) were calculated by microdilution 

method for meropenem and curcumin. Meropenem 

and curcumin as the active ingredient were suspend- 

ed in accordance with the manufacturer's recommen- 

dations, and stock solutions were prepared. Serial 

dilutions were made in Mueller Hinton broth on mi- 

crodilution plates. The dilution ranges were 0.5-256 

mg/L for meropenem and 2-1024 mg/L for curcumin. 

After the suspension was prepared in 0.5 McFarland 

(108 cfu/ml) standard turbidity of all isolates, the final 

bacterial concentration was inoculated to microdi- 

lution plates to be 5×105  cfu/ml, and the microplates 

were incubated at 36°C ± 1°C for 18-20 hours. The 

lowest concentration without bacterial growth was 

determined as the MIC value. The determined MIC 

values were classified according to phenotypic resis- 

tance patterns. 

 
Determination of in vitro synergy of meropen- 

em-curcumin combinations. In the strains de- 

termined as meropenem-resistant and moderately 

sensitive using EUCAST criteria, the checkerboard 

microdilution method was used to evaluate the syn- 

ergy  between  meropenem  and  curcumin.  For  this 

test, 50 µl Mueller Hinton broth was distributed to 

all wells of 96 well microplate, and serial dilutions 

of meropenem (0.5-256 mg/L) on the horizontal axis 

and curcumin (8-1024 mg/L) on the vertical axis were 

made. Bacterial suspensions of 0.5 McFarland (108 

cfu/ml) standard turbidity from all isolates were pre- 

pared, diluted 1:10, and inoculated as 5 µl in each well 

of 100 µl volume to ensure that the final bacterial con- 

centration in each well was 5×105 cfu/ml. Microplates 

were incubated for 18-20 hours at 37°C. Synergy 

relationship was evaluated by calculating Fractional 

Inhibitor Concentration Index (FICΣ). The synergy 

between curcumin and Meropenem was determined 

by calculating the FICΣ as described previously. 

 

 
 

It was interpreted as synergy if the FICΣ value was 

≤0.5, additive effect if >0.5-1, indifference effect if >1- 

4, and antagonist effect if >4 (26). 
 

 
 
RESULTS 

 
Fifteen out of the 39 isolates studied had MBL resis- 

tance pattern, 6 had KPC resistance pattern, 17 had 

OXA-48 resistance pattern, and 1 had AmpC resis- 

tance pattern. The MIC values measured alone were 

between 4-256 mg/L for meropenem and 1024 mg/L 

for curcumin in all isolates. MIC values in the com- 

bination ranged between 0.5-256 mg/L for meropen- 

em and 8-1024 mg/L for curcumin. MIC values and 

FICΣ of isolates alone and in combination are shown 

in Table 1. According to calculated FICΣs, synergis- 

tic effect was observed in a total of 12 isolates as 4 

isolates producing MBL, 3 isolates producing KPC, 

4 isolates producing OXA-48 and 1 isolate producing 

AmpC. No antagonistic effect was observed in any 

isolate. Synergistic effect interpretations according 

to phenotypic resistance patterns are shown in Table 

2. 
 

 
 
DISCUSSION 

 
The dramatic increase in the clinical effect and 

prevalence of infections caused by carbapenemase 

producing bacteria, especially in the Enterobacteri- 

aceae family, is a global health problem. Because it 

is easily spread and colonized in health care circles, 

preventing transition is a major public health prob- 

lem (2). 

EUCAST recommends the use of meropenem for 

carbapenemase screening. Combination disc test, 

colorimetric tests, carbapenem inactivation method, 

MALDI-TOF and phenotypic methods such as lat- 

eral flow are recommended for screening (27). Con- 

sidering  these  criteria,  carbapenemase  resistance 
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Table 1. MIC values and FICΣ of isolates alone and in combination 

 

Isolates Isolates 

Number 
MICs in monotherapy 

(mg/L) 

 MICs in combination 

(mg/L) 
FICΣs Comments 

  MEM C  MEM C   
MBL isolates AB 40 256 1024  0,5 1024 1 Additive 

 AB 56 16 1024  0,5 8 0,03 Synergy 

 AB 331 128 1024  0,5 8 0,01 Synergy 

 AB 610 16 1024  0,5 8 0,03 Synergy 

 AB 1752 256 1024  0,5 1024 1 Additive 

 AB 2697 256 1024  0,5 8 0,009 Synergy 

 AB 3380 16 1024  32 8 2 Indifference 

 AB 3722 16 1024  64 8 4 Indifference 

 AB 4628 256 1024  0,5 1024 1 Additive 

 AB 4784 32 1024  128 8 4 Indifference 

 AB 4945 64 1024  128 8 2 Indifference 

 AB 793 32 1024  128 8 4 Indifference 

 AB 797 64 1024  128 8 2 Indifference 

 AB 820 8 1024  0,5 1024 1 Additive 

 AB 1 128 1024  256 8 2 Indifference 
KPC isolates AB 98 16 1024  0,5 8 0,03 Synergy 

 AB 256 16 1024  0,5 8 0,03 Synergy 

 AB 530 16 1024  32 8 2 Indifference 

 AB 1394 16 1024  32 8 2 Indifference 

 AB 2557 256 1024  0,5 8 0,009 Synergy 

 AB 4568 32 1024  32 8 1 Additive 
OXA-48 isolates AB 290 16 1024  1 8 0,07 Synergy 

 AB 1105 16 1024  64 8 4 Indifference 

 AB 1380 8 1024  2 8 0,25 Synergy 

 AB 2043 4 1024  4 8 1 Additive 

 AB 2509 4 1024  4 8 1 Additive 

 AB 3235 8 1024  0,5 1024 1 Additive 

 AB 3322 16 1024  0,5 8 0,03 Synergy 

 AB 4835 128 1024  0,5 512 0,5 Synergy 

 AB 2 128 1024  256 8 2 Indifference 

 AB 4 16 1024  32 8 2 Indifference 

 AB 5 16 1024  32 8 2 Indifference 

 AB 7 32 1024  64 8 2 Indifference 

 AB 9 32 1024  64 8 2 Indifference 

 AB 12 16 1024  64 8 4 Indifference 

 AB 13 16 1024  32 8 2 Indifference 

 AB 14 16 1024  32 8 2 Indifference 

 AB 15 32 1024  32 8 1 Indifference 
AmpC isolates AB 374 64 1024  0,5 8 0,01 Synergy 

 

C, Curcumin; KPC, Klebsiella pneumoniae carbapenemase; MBL, metallo-beta-lactamases; MEM, meropenem 

 
was sought in meropenem resistant K. pneumoniae 

isolates with a combination disc test with reported 

sensitivity between 82.3-100% and specificity be- 

tween 97.1-100% and recommended for use in the 

basic microbiology laboratory (28). Among the iso- 

lates studied, the highest rate of resistance mecha- 
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Table 2. Synergistic effect interpretations according to phe- 

notypic resistance patterns 

antagonistic effect. Limited studies have been report- 

ed on synergistic activity to carbapenem resistance 

                                                                                            mechanisms. In these studies, higher synergistic ef- 

Resistance 

phenotype 

Synergistic 

effect 

Additive 

effect 

Antagonistic 

effect 

fects have been observed in several combinations 

of NDM containing K. pneumoniae isolates (31). In 
 

 n % n % n % our study, higher curcumin-meropenem synergy was 
MBL (15) 4 26,7 11 73,3 0 0 observed in K. pneumoniae isolates producing KPC. 
KPC (6) 3 50 3 50 0 0 The optimum potential of curcumin is limited due 
OXA-48 (17) 4 23,5 13 76,5 0 0 to its poor oral bioavailability, poor absorption, rapid 
AmpC (1) 1 100 0 0 0 0 metabolism and rapid systemic elimination and in- 

       adequate dissolution in aqueous solvents. Numerous 
KPC, Klebsiella pneumoniae carbapenemase; MBL, metal- 

lo-beta-lactamases 

 
nism was found to be OXA-48 in accordance with 

Turkish Data (1, 4). 

Combination therapies play an important role in 

the treatment of K. pneumoniae strains producing 

carbapenemase. It was emphasized that there was 

no significant difference in mortality rates between 

monotherapy and untreated patients. It has been re- 

ported that combination therapy reduces mortality 

and that the lowest mortality rates are seen in combi- 

nations containing carbapenem (29). 

For this purpose, combination susceptibility tests 

of carbapenems and colistin, tigecycline, sulbactam, 

fosfomycin, aminoglycosides were examined and 

various synergy levels were obtained (30-32). The 

fact that these combination therapies have varying 

levels of synergy has led to the search for new treat- 

ment alternatives, and numerous studies have been 

reported on antibiotic-natural compound combina- 

tion synergy for this purpose (33). 

It has been reported that natural products with low 

molecular weight increase the effect of antifungal 

and antibacterial agents (23). Essential oil compo- 

nents and derivatives have been used in combination 

with antibiotics. One of them has shown the syn- 

ergistic effect of antibiotic therapy combined with 

curcumin in the treatment of methicillin resistant S. 

aureus (24). 

In one study, the synergistic effect of curcumin 

with antibiotics has been reported to prevent biofilm 

formation (34). In another study, antagonistic effects 

were reported in the use of ciprofloxacin with cur- 

cumin for Salmonella enterica Serovar Typhimirium 

and Salmonella enterica Serovar Typhi (25). In our 

study, 30.7% synergy was observed between cur- 

cumin and meropenem against carbapenem resistant 

K. pneumoniae isolates, whereas no strain showed 

studies are conducted to increase the bioavailability 

of curcumin (17). Due to the lack of effective antibi- 

otics against K. pneumoniae, which produces carbap- 

enemase, combination therapy appears to be a useful 

strategy to provide clinical efficacy and prevent the 

development of resistance. 
 

 
 
CONCLUSION 

 
We did not detect any antagonism between curcum- 

in and meropenem against K. pneumoniae, which 

produces carbapenemase, and we detected higher 

synergies especially in isolates containing KPC. We 

think that curcumin may an ideal nutritional supple- 

ment that will positively affect the process and even 

a good antimicrobial alternative in the treatment of 

many bacterial infections, including resistant strains. 

Further in vitro and clinical studies are needed to de- 

termine of bioavailability and confirm the effective- 

ness of this combination of drugs. 
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