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ABSTRACT 
 
Background and Objectives: Lontar (Borassus flabellifer L.) is widely grown in Indonesia and one of its products is palm 
sap. Palm sap contains a high level of sugar, making it suitable as a medium to increase the lactic acid bacteria (LAB) pro-
duction of exopolysaccharides (EPS). This study aimed to isolate the EPS-producing LAB from palm sap and evaluate its 
EPS production. LAB isolation was carried out on MRS agar containing 0.5% CaCO3. 
Materials and Methods: The screening and production of EPS were carried out on MRS media supplemented with 10% 
sucrose. The molecular identification of the selected EPS-producing LAB was based on 16S rDNA. A quantitative analysis 
of EPS polymer dry mass and total sugar was conducted using one-way ANOVA.  
Results: In this study, five EPS-producing LABs were found: Fructobacillus fructosus N4, Leuconostoc mesenteroides N5, 
Leuconostoc mesenteroides N7, Leuconostoc mesenteroides N9, and Fructobacillus fructosus N10. The highest EPS yield 
in liquid media was 10.997 ± 1.591 g/L by Leuconostoc mesenteroides N7, whereas the lowest was 4.505 ± 0.459 g/L by 
Fructobacillus fructosus N10. 
Conclusion: This study found Fructobacillus fructosus strains as EPS producers that have never been reported before.

Keywords: Borassus flabellifer; Exopolysaccharide; Fructobacillus fructosus; Lactic acid bacteria; Leuconostoc mesen-
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INTRODUCTION

 Exopolysaccharides (EPS) is a long-chain polysac-
charide produced by bacteria. Some Gram-positive 
bacteria can produce EPS to protect the cell against 
osmotic stress, desiccation, antibiotics and phagocy-
tosis (1, 2). The structure of EPS can be comprised 

of one type of sugar monomer (homopolysaccharide) 
or several types of sugar monomer (heteropolysac-
charide) (2). Moreover, EPS also contains several 
non-carbohydrate substituents, such as acetate, pyru-
vate, succinate, and phosphate (3), and biomolecules, 
such as proteins, nucleic acids, lipids and humic sub-
stances (4). Lactic acid bacteria (LAB) can produce 
EPS that are attached to cell walls or released to the 
environment (5).

LAB is regarded as Generally Recognized as Safe 
and probiotics so the produced EPS are non-toxic 
(6). LAB can effectively perform the biosynthesis 
of functional EPS through sugar fermentation (7); 
therefore, the produced EPS by LAB has the ad-
vantages and potentials if used as pharmaceutical 
ingredients and food additives. It plays a role in the 
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formation of texture, taste and viscosity in fermented 
milk products. Additionally, EPS are currently be-
ing developed play a beneficial role in health, e.g., 
antitumor, immunomodulatory activities, cholesterol 
reduction, prebiotic, antioxidant and antidiabetic (8-
10).

Indonesia has a diverse palm family plants that 
are dispersed in every region, including Java island, 
one of which is lontar (Borassus flabellifer L.) (11). 
The main product of this plant is the sap which is 
obtained by tapping the male flowers. Palm sap con-
tains about 10%-15% sugar, which is sucrose and re-
ducing sugar. The high sugar contents and other nu-
trients in palm sap are suitable as a growth medium 
for a LAB that requires complex natural nutrients. 
It must be considered that nonpathogenic bacteria 
produce high amounts of EPS. Therefore, this study 
aimedto isolate the EPS-producing LAB from palm 
(Borassus flabellifer L.) sap and evaluate its EPS  
production.

 
MATERIALS AND METHODS

 Study design. This study used anexperimental 
design utilizing in vitro methods. The first step was 
the isolation and identification of EPS-producing 
LAB from palm sap and then the evaluation of the 
EPS production of the selected LAB. The experiment 
for EPS production was conducted in triplicate.

Isolation and screening of EPS-producing LAB. 
Palm (Borassus flabellifer L.) sap was taken from 
the city of Lamongan, East Java, Indonesia. The 
palm sap was put into the laboratory bottle asepti-
cally overnight and then stored in a cooling box to 
be brought to the laboratory. As much as 300 mL 
of palm sap was kept for 18 h for spontaneous fer-
mentation (aerobic conditions), then 25 mL of those 
were transferred into 225 mL buffered peptone wa-
ter (Merck, Germany) and diluted to 10-10. As much 
as 1 mL of diluted sample was taken to be grown 
on De Man Rogosa and Sharpe (MRS) agar (Mer-
ck, Germany) containing 0.5% (w/v) CaCO3 (HiMe-
dia, India) then incubated at a 30°C incubator for 48 
h. Bacterial colonies that produce clear zones were 
observed for morphology, transferred to an agar 
slant, and then purified by streaking on MRS agar 
plates. The screening of EPS-producing LAB was 
performed by growing on MRS agar supplemented 

with 10% (w/v) sucrose (Pronadisa, Spain). The LAB 
is considered as EPS producers if mucus production 
occurs in the medium.

EPS production and extraction. The inoculum 
was produced by transferring LAB into 25 ml of 
MRS broth (Pronadisa, Spain) and then incubated at 
30°C for 18 h. The inoculum turbidity was adjusted 
to an optical density (OD) of 0.5 at 600 nm, which 
was equivalent to 109CFU mL-1. The EPS was pro-
duced using 100 mL of MRS broth supplemented 
with 10% (w/v) sucrose, then added with 10% (v/v) 
of inoculum, and incubated at 30°C for 24 h (12). The 
fermentation medium was centrifuged at 6000 rpm 
at 4°C for 15 min. The crude EPS was precipitated 
by the addition of 2 × volume of cold ethanol (95%) 
(13) and kept at 4°C for 24 h. The crude EPS was 
freeze-dried for 18 h and the results were expressed 
as polymer dry mass.

Total sugar determination. The EPS total sugar 
was determined by the phenol sulfuric acid method 
using glucose as a standard (14). The EPS (0.01 g) 
was dissolved in 250 ml of distilled water and 2 ml 
of the solution was added with 1 ml of 5% phenol 
and 5 ml of 96% sulfuric acid (v/v). Subsequently, 
the solution was heated in a boiling water bath for 30 
min. The absorbance was measured at 490 nm. The 
total sugar of EPS was calculated by the standard  
curve.

 Infrared (IR) spectrum analysis. The IR spec-
trum of EPS was determined using Fourier trans-
form infrared (FTIR) spectrophotometer (Shimadzu, 
Japan). The EPS was mixed with KBr and pressed on 
a mold. The spectrum was recorded in the region of 
4000-400 cm-1 (15).

Selected LAB identification. The observed phys-
iological characteristics of EPS-producing LAB 
including colony morphology, Gram staining, en-
dospore staining and catalase activity. The bio-
chemical characteristics were identified using API 
50CHL (bioMerieux, France) according to the man-
ufacturer’s instructions to find out the fermentation  
patterns in carbohydrate substrates and their deriv-
atives.

Selected LAB molecular identification. The se-
lected LAB strains were grown on MRS agar and 
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incubated for 48 h. Three to five bacterial colonies 
were used for DNA isolation using commercial DNA 
kits (iNtRON Biotechnology, Inc.) according to the 
manufacturer’s instructions. The DNA suspension 
was confirmed using agarose gel electrophoresis 
0.7% (w/v). DNA templates were amplified by poly-
merase chain reaction (PCR) method with 16S rDNA 
using the following primers: 27F (5`-AGA GTT TGA 
TCC TGG CTC AG-3') and 1492R (5`GGT TAC CTT 
CTT ACG ACT T-3'). The PCR operating conditions 
were 94°C pre-denaturation for 30 s, 55°C denatur-
ation for 30 s, 55°C annealing for 45 min, and 72°C 
extension for 1.5 min over 35 cycles. The obtained 
amplicon was confirmed with agarose gel electro-
phoresis 1.5% (w/v). The obtained nucleotide base 
sequences were analyzed using sequence scanners, 
BioEdit, and MEGA 6 software. The sequences were 
analyzed using BLASTN compared with the se-
quences in the NCBI.

Statistical analysis. The quantitative analysis of 
polymer dry mass and total sugar of EPS was con-
ducted using one-way ANOVA with Tukey’s post-
hoc test utilizing SPSS Statistics 23.0 for Windows 
(IBM).

RESULTS

   Isolation and screening of EPS-producing LAB. 
Palm (Borassus flabellifer L.) sap contains a high 
level of sugar, especially sucrose, making it suitable 
to isolate EPS-producing LAB. This study found 
18 isolates of LAB, characterized by the clear zone 
formation around the colony on the MRS agar con-
taining 0.5% CaCO3. All strains were Gram-posi-
tive, non-spore-forming, and catalase-negative. The 
results of screening on MRS media supplemented 
with 10% sucrose revealed five strains were capable 
to produce EPS, namely, N4, N5, N7, N9 and N10. 
The EPS-producing LAB strains were rod cells for 
the N4 and N10 strains and ovoid cocci for the N5, 
N7 and N9 strains. The EPS production by the LAB 
is presented in Fig. 1. 
   The ability of EPS-producing LAB to ferment 49 
types of carbohydrates and hydrolyze esculin was 
analyzed using API 50CHL (Table 1). All strains 
fermented D-glucose, D-fructose, N-acetylglucos-
amine, D-sucrose, D-trehalose, and potassium glu-
conate. Also, N7 strain fermented D-mannose and 

potassium 5-ketogluconate. N9 strain fermented po-
tassium 2-ketogluconate and potassium 5-ketogluco-
nate. N10 strain fermented D-mannose. These results 
indicated the biochemical differences of EPS-pro-
ducing LAB from palm sap. 

   Molecular identification of selected LAB. 
EPS-producing LAB was identified based on its 16S 
rDNA by PCR with the amplicon size of 1500 bp to 
determine the genus and strain (Fig. 2). The results of 
the molecular identification (Fig. 3) revealed that the 
N4 strain was Fructobacillus fructosus with 99.9% 
similarity to Fructobacillus fructosus JCM1119 and 
Fructobacillus fructosus ATCC3516. N5 strain was 
Leuconostoc mesenteroides with 99.9% similarity to 
Leuconostoc mesenteroides F16, Leuconostoc mes-
enteroides SD7002, and Leuconostoc mesenteroides 
SD1S2L1. N7 strain was Leuconostoc mesenteroides 
with 100% similarity to Leuconostoc mesenteroides 
SD7002. N9 strain was Leuconostoc mesenteroides 
with 99.9% similarity to Leuconostoc mesenteroides 
SD7002, while the N10 strain was Fructobacillus 
fructosus with 99.9% similarity to Fructobacillus 
fructosus V5. This study found two species of LAB 
as EPS producers, Leuconostoc mesenteroides and 
Fructobacillus fructosus.

   Production of EPS. Different bacterial strains ex-
hibited significant effects (P < 0.05) on polymer dry 
mass and total sugar of EPS. The level of polymer 
dry mass production by selected LAB ranged from 
4.505 to 10.997 g/L (Table 2). Leuconostoc mesen-
teroides N7 produced the highest EPS yield, whereas 
the lowest was Fructobacillus fructosus N10. The 
total sugar of produced EPS by Leuconostoc mes-
enteroides N5 and Leuconostoc mesenteroides N7 
was 73% and 73.844%, respectively (Table 2). These 
strains are capable to produce highly pure EPS. The 
total sugar of EPS produced by Leuconostoc mesen-
teroides KIBGE-IB22 was 83% (16), whereas the to-
tal sugar of EPS produced by L. plantarum YML009 
was 68.1% (17).

   Infrared spectrum analysis. The spectrum re-
sults in this study were presented in Table 3. The 
FTIR spectrum analysis of EPS showed the identical 
spectrum were hydroxyl stretching vibrations, CH 
stretching, C=O stretching, (CH) (CH2) bending vi-
brations, covalent vibrations of C–O–C bonds, and 
glycosidic bonds (Fig. 4). 
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Fig. 1. EPS production by selected LAB on sucrose-containing medium

Table 1. Carbohydrate fermentation characteristics by selected LAB

Carbohydrates

Glycerol
Erythritol
D-arabinose
L-arabinose
D-ribose
D-xylose
L-xylose
D-adonitol
Methyl-βD-xylopyranoside
D-galactose
D-glucose
D-fructose
D-mannose
L-sorbose
L-rhamnose
Dulcitol
Inositol
D-mannitol
D-sorbitol
Methyl-αD- Mannopyranoside
Methyl-αD-Glucopyranoside
N-acetylglucosamine
Amygdalin
Arbutin
Esculin

Result
N4
−
−
−
−
−
−
−
−
−
−
+
+
−
−
−
−
−
−
−
−
−
+
−
−
+

N5
−
−
−
−
−
−
−
−
−
−
+
+
−
−
−
−
−
−
−
−
−
+
−
−
+

N7
−
−
−
−
−
−
−
−
−
−
+
+
+
−
−
−
−
+
−
−
−
+
−
−
−

N9
−
−
−
−
−
−
−
−
−
−
+
+
−
−
−
−
−

−
−
−
+
−
−
−

N10
−
−
−
−
−
−
−
−
−
−
+
+
+
−
−
−
−
+
−
−
−
+
−
−
+

Carbohydrates

Salicin
D-cellobiose
D-maltose
D-lactose
D-melibiose
D-sucrose
D-trehalose
Inulin
D-melezitose
D-raffinose
Amidon (starch)
Glycogen
Xylitol
Gentiobiose
D-turanose
D-lyxose
D-tagatose
D- fucose
L-fucose
D-arabitol
L-arabitol
Potassium gluconate
Potassium 2-ketogluconate
Potassium 5-ketogluconate

Result
N4
−
−
−
−
−
+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
+
−
−
−

N5
−
−
−
−
−
+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
+
−
−
−

N7
−
−
−
−
−
+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
+
−
+
−

N9
−
−
−
−
−
+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
+
+
+
−

N10
−
−
−
−
−
+
+
−
−
−
−
−
−
−
−
−
−
−
−
−
−
+
−
−
−

Abbreviations: (−) negative reaction; (+) positive reaction
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Fig. 2. PCR product of selected LAB based on 16s rRNA. 
Dash (–) means negative control (ddH2O); N4-N10 = select-
ed LAB; M = DNA marker.

Fig. 3. Phylogenetic tree of EPS-producing LAB with reference bacteria based on the 16S rDNA sequences with a maxi-
mum-likelihood method

DISCUSSION

   Based on the phenotypic observations, N4, N5, N7, 
N9 and N10 strains were shown to produce visible 
EPS with the formation of shiny, mucoid, and ropy 
colonies on MRSA sucrose media. The Leuconostoc 
strains can produce EPS with shiny, mucoid, or vis-
cous colonies on sucrose-containing media (12).
   The different biochemical properties indicate dif-
ferent genotypes. The previous study reported that 
Leuconostoc mesenteroides G2d fermented D-ga-
lactose, α-methyl-D-glucoside, D-glucose, D-fruc-
tose, N-acetylglucosamine, D-lactose, D-maltose, 
D-mannose, D-sucrose, D-trehalose, and D-turanose 
but cannot hydrolyze esculin; whereas Leuconostoc 
mesenteroides G5b fermented D-glucose, D-fruc-
tose, N-acetylglucosamine, arbutin, salicin, D-lac-
tose, D-maltose, D-mannose, D-sucrose, D-treha-
lose, D-turanose, and potassium gluconate, as well 
as hydrolyzed esculin (18).
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Table 3. FTIR spectra of produced EPS by selected LAB 
strains

Functional group

(OH) stretching
(CH) stretching
(C = O) stretching
(CH) (CH2) bending 
vibration
Covalent vibration COC 
bond
α (1.6) glycosidic
α-glycosidic

Wavenumber (cm-1)
E
3381
2932
1655
1348

1154 

1013
916

D
3449
2930
1651
1346

1154

1015 
916

C
3426
2928
1649
1345

1152

1015
916

B
3389
2926
1653
1381

1154

1015
916

A
3416
2924
1647
1372

1144

1048
920

   The results revealed that EPS-producing LAB iso-
lated from palm (Borassus flabellifer L.) sap were 
Leuconostoc mesenteroides and Fructobacillus fruc-
tosus. Fructobacillus was distinguished from Leu-
conostoc based on its preference for fructose over 
glucose as a carbon source (19). This study found 
strains of F. fructosus as EPS producers that have 
never been reported before.
   The previous study showed that adding sucrose 
to the fermentation media of Leuconostoc mesen-
teroides could produce higher EPS than without. 
EPS production requires a substrate with high sugar 
content. MRS broth media supplemented with 10% 
sucrose was utilized in the EPS production in this 
study. Dextran biosynthesis by Leuconostoc spp. 
showed that most fructose, derived from sucrose, 
will accumulate in the media, whereas glucose is 
used as a substrate for dextran synthesis by dextran 
sucrase enzyme (20). 
   In this study, the EPS levels were greater than 
previously reported. Dextran EPS types can be pro-
duced by Leuconostoc mesenteroides in high quan-
tities (16). The EPS level produced by Leuconostoc 
lactis was 340.82 mg/L (21), whereas that produced 
by mutant Weissella confusa was 5580.72 mg/L (13). 

Table 2. EPS production by selected LAB strains

Strain

F. fructosus N4
Leuc. mesenteroides N5
Leuc. mesenteroides N7
Leuc. mesenteroides N9
F. fructosus N10

Polymer dry 
mass (g/L)
6.14 ± 2a

9.849 ± 0.960b

10.997 ± 1.591b

9.713 ± 0.212b

4.505 ± 0.459a

Total sugar 
(%)
61.729 ± 1.006ab

73 ± 1.434b

73.844 ± 4.913b

47.244 ± 7.834a

70.327 ± 5.460b

Fig. 4. FTIR spectra of EPS produced by F. fructosus N4 (A), Leuc. mesenteroides N5 (B), Leuc. mesenteroides N7 (C), Leuc. 
mesenteroides N9 (D), and F. fructosus N10 (E)
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Furthermore, Leuconostoc mesenteroides NCDC744 
and Leuconostoc citreum was reported to be able to 
produce higher EPS levels, which were 12.7 g/L and 
28.3 g/L, respectively (12;22). The different EPS lev-
els by each LAB in the media were influenced by the 
microbial strains used (17). 
    FTIR spectrophotometer was used to determine 
the functional groups and types of bonds in EPS. The 
characteristics of polysaccharides could be observed 
at wavenumbers of 1650, 1400 and 1250 cm-1 (23). 
Previous studies have shown that dextran produced 
by Leuconostoc mesenteroides FT045B indicated 
α-(1,6) bonds by the peaks at 1010, 916 and 1159 cm-1 

due to the covalent vibrations from C–O–C bonds 
and glycosidic bridge (24). Dextran produced by 
Leuconostoc mesenteroides KIBGE-IB22 revealed 
the presence of stretching vibrations of hydroxyl at 
3430 cm-1, stretching vibrations from C–H at 2929 
cm-1, and a carboxyl group at 1635 cm-1 (16). 
Further research is underway to optimize the EPS 
production by selected LAB from palm sap on vari-
ous modified media and to purify EPS for its applica-
tion as a bioactive compound.
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