

International Journal of Hematology-Oncology and Stem Cell Research

Hybrid Ganciclovir/Valacyclovir Prophylaxis Reduces CMV Reactivation in High-Risk Allogeneic Stem Cell Transplant Recipients

Maryam Barkhordar¹, Amirabbas Rashidi¹, Mohammad Vaezi¹, Neda Alijani², Seied Asadollah Mousavi¹, Sahar Tavakoli Shiraji¹, Mehrdad Abbaszadeh¹, Hosein Kamranzadeh Fumani¹, Tanaz Bahri¹

Corresponding Author: Tanaz Bahri, Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran

E-mail: tanaz.bahri@gmail.com

Received: 31, Aug, 2025 Accepted: 18, Sep. 2025

ABSTRACT

Background: Cytomegalovirus (CMV) reactivation remains a critical concern following allogeneic hematopoietic stem cell transplantation (allo-HSCT), particularly in CMV-seropositive patients undergoing allo-HSCT from alternative donors. This study explored whether a hybrid CMV prophylaxis regimen would be more effective than the standard preemptive regimen in resource-limited settings where Letermovir is unavailable or cost-prohibitive.

Materials and Methods: This prospective single-center cohort study included adult patients with acute leukemia who received allo-HSCT from alternative donors between November 2018 and May 2022. The primary outcome was the evaluation of the CMV reactivation incidence in allo-HSCT patients receiving the hybrid CMV prophylaxis regimen comprising pretransplant ganciclovir followed by high-dose valacyclovir compared with the control patients who received the preemptive regimen. Secondary outcomes included overall survival (OS), disease-free survival (DFS), GVHD-free relapse-free survival (GRFS), and non-relapse mortality (NRM) between the two groups.

Results: A total of 80 patients, 34 receiving hybrid CMV prophylaxis and 46 receiving the preemptive protocol. The hybrid prophylaxis group exhibited a significantly lower incidence of CMV reactivation at 90 days post-transplantation (34% vs. 82%, P = 0.000). However, no statistically significant differences were observed in the overall survival, disease-free survival, or non-relapse mortality.

Conclusion: The hybrid regimen reduced CMV reactivation in high-risk HSCT recipients but did not improve survival outcomes, offering a practical alternative in settings with limited access to Letermovir.

Keywords: Cytomegalovirus prophylaxis; Allogeneic stem cell transplantation; Ganciclovir; Valacyclovir; Hybrid regimen; Preemptive therapy; CMV reactivation; Haploidentical transplant

DOI: 10.18502/ijhoscr.v19i4.19979

Copyright © 2025 Tehran University of Medical Sciences. This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0). Non-commercial uses of the work are permitted, provided the original work is properly cited.

¹Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran

²Department of Infectious Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

INTRODUCTION

Cytomegalovirus (CMV) reactivation remains a concern after allogeneic hematopoietic stem cell transplantation (allo-HSCT)^{1,2}. Without CMV prophylaxis, 70-80% of seropositive HSCT recipients experience CMV reactivation, resulting in significant morbidity and mortality^{3,4}. CMV infection is associated with increased transplant-related mortality ⁵.

Several risk factors that can increase the likelihood of CMV reactivation following allogeneic transplantation have been identified. These include recipient CMV seropositivity, in vivo or ex vivo T cell depletion, administration of high-dose steroids, use of post-transplant cyclophosphamide, transplantation from HLA-mismatched or unrelated donors, and GVHD ⁶⁻¹².

Two major approaches, prophylactic and preemptive treatment, are currently used to prevent CMV disease. Prophylactic treatment typically involves administration of antiviral therapy starting on the day of transplantation and continuing through 100 days post-transplantation. In contrast, preemptive therapy entails initiating antiviral treatment based on monitoring patients for early signs of CMV reactivation and starting treatment with antiviral medication once detected¹³.

Various antiviral agents, such as ganciclovir and foscarnet, have been effective in reducing the incidence of CMV infection and disease, although their significant organ toxicity presents a substantial limitation for their use as prophylaxis ¹⁴⁻¹⁸. Effective and safe anti-CMV prophylaxis can mitigate the risk of CMV reactivation and improve mortality rates following HSCT.

Letermovir decreases clinically significant CMV infection, exhibits a favorable toxicity profile; and is approved for CMV prevention among adult CMV seropositive HSCT recipients. Letermovir may be a valuable option for CMV prevention in high-risk transplant patients, although the cost and resistance need to be considered¹⁹. Currently, maribavir is being studied in phase III trials ²⁰⁻²².

Although effective, letermovir is associated with several barriers, such as high cost and emerging resistance, particularly in resource-constrained regions. This has spurred interest in alternative strategies using widely available antivirals, such as ganciclovir and valacyclovir, albeit with potential toxicity trade-offs. We hypothesized that a hybrid regimen combining pre-transplant ganciclovir with high-dose valacyclovir could balance the efficacy and accessibility in high-risk HSCT recipients.

Materials and Methods Ethical Approval and Consent

This prospective cohort study was conducted at the Hematology-Oncology and Stem Cell Transplantation Research Center (HORCSCT), Tehran University of Medical Sciences, Iran. The protocol (IR.TUMS.HORCSCT.REC.1401.016) received ethical approval from the Institutional Review Board on March 15, 2022, and adhered to the Declaration of Helsinki and Good Clinical Practice guidelines. All participants provided written informed consent.

Study Design and Patients

The study enrolled consecutive adult patients (aged 18 or older) with acute leukemia who underwent their first allogeneic stem cell transplant (allo-HSCT) from alternative donors—including haploidentical, mismatched unrelated, or unrelated donors—between November 2018 and May 2022. Key eligibility criteria required participants to meet the following:

- 1. CMV-seropositive status in either the recipient (R+) or donor (D+).
- 2. Transplantation during complete remission (CR1–CR3).
- 3. Presence of high-risk factors for CMV reactivation, such as receiving a transplant from an HLA-mismatched/haploidentical donor, undergoing T-cell depletion, or using post-transplant cyclophosphamide.

Patients were excluded if they met any of the following:

- Both recipient and donor were CMVseronegative.
- 2. CMV reactivation occurred prior to the transplant (day 0).
- 3. Previous history of allogeneic transplantation.

Based on evolving institutional protocols, participants were divided into two groups:

- Hybrid prophylaxis group (November 2018– December 2020; n=34): Patients receiving intravenous ganciclovir (5 mg/kg daily) from day -8 to -2 during conditioning. This was followed by oral valacyclovir (2 g every 8 hours, adjusted for kidney function) from day -1 to day +100, or intravenous acyclovir (500 mg/m² every 8 hours) if oral intake was impaired due to mucositis or swallowing difficulties.
- Preemptive therapy group (January 2021– May 2022; n=46): Treatment began only after CMV DNA levels reached ≥100 copies/mL. Induction therapy included oral valganciclovir (900 mg/m² twice daily for 7– 14 days), followed by maintenance dosing (450 mg/m² twice daily) until two consecutive negative PCR results were achieved. Doses were adjusted for renal impairment.

All participants were monitored for CMV infection twice weekly via PCR until hospital discharge, then weekly until day +100. Follow-up continued through the end of 2023 to evaluate long-term outcomes and the effectiveness of each CMV management strategy.

Conditioning regimen, stem cell source, and GVHD prophylaxis

All patients in both groups received an identical myeloablative conditioning (MAC) regimen, followed by peripheral blood stem cell (PBSC) transplantation. This regimen consisted of intravenous busulfan (BU) 3.2 mg/kg/day administered from days -6 to -3, along with cyclophosphamide 60 mg/kg/day on days -2 and -1²³.

A combination of cyclosporine A (CyA) and methotrexate (MTX) was used for GVHD prophylaxis. CyA was administered intravenously at a starting dose of 1.5 mg/kg/day on day -2, which was then increased to 3 mg/kg/day from day +7 until oral administration was possible. On day +1, MTX was administered at 10 mg/m², followed by 6 mg/m² on days +3, +6, and +11. Additionally, as a component of the GVHD prophylaxis regimen for recipients of

alternative donors, rabbit anti-thymocyte globulin (ATG) 2.5 mg/kg/day was used on days -3 and -2 and days -3 to -1, respectively. Furthermore, post-transplant cyclophosphamide 40 mg/kg/day on days +3 and +4 was administered to patients who received haploidentical grafts.

Supportive care, including the administration of fluconazole and trimethoprim/sulfamethoxazole to prevent Candida and Pneumocystis jirovecii infections, respectively, was similarly provided to all recipients in both groups. The patients received acyclovir 200 mg three times daily for prophylaxis against varicella-zoster and herpes simplex virus (HSV); nevertheless, during the mucositis period, 250 mg/m² intravenous acyclovir was substituted twice daily (adjusted for renal insufficiency).

Endpoints and Definitions

The primary objective of this study was to compare the incidence of CMV reactivation between the two groups. CMV reactivation was defined as the detection of CMV DNA in serum by PCR. Additionally, a high viral load was indicated by a CMV DNAemia level exceeding 1000 copies/ml.

The secondary endpoints included the incidence of grade III-IV acute GVHD (aGVHD) at 100 days, 2-year occurrence of extensive chronic GVHD (cGVHD), and probabilities of overall survival (OS), disease-free survival (DFS), GVHD-free, relapse-free survival (GRFS), and non-relapse mortality (NRM) over two years post-transplantation. Acute and chronic GVHDs were defined and graded based on Glucksberg's criteria²⁴ and the National Institutes of Health consensus guidelines ²⁵.

OS was defined as the duration from HSCT to death, regardless of disease recurrence and was terminated at the final follow-up. DFS was characterized as the period following transplantation with no evidence of active disease. GRFS was defined as the time duration in the absence of grade III-IV aGVHD, extensive cGVHD treated with systemic immunosuppressive therapy, or relapse. Death occurring due to any cause, except relapse, is denoted as NRM.

Statistical analysis

Continuous variables were reported as median (interquartile range [IQR]) and compared using the Mann-Whitney U test. Categorical variables were analyzed using the chi-square or Fisher's exact tests. Survival outcomes (OS, DFS, and GRFS) were estimated using Kaplan-Meier curves and compared using log-rank tests. The cumulative incidences of CMV reactivation, GVHD, and NRM were calculated using competing risk regression (Fine-Gray model), with death as a competing event. The follow-up duration was determined via reverse Kaplan-Meier estimation. All analyses were performed in Stata v17 (StataCorp), with two-sided P < 0.05 considered significant.

RESULTS

Study population

A total of 80 patients were enrolled in this study, with 34 patients receiving a hybrid CMV prophylaxis regimen and 46 receiving the preemptive regimen. There were no significant differences between the two groups regarding the demographic and clinical variables studied.

Most patients underwent transplantation from haploidentical donors, with 22 patients (64.71%) in the hybrid group and 25 patients (54.35%) in the preemptive group, followed by matched unrelated donors (MUD) occurring in 9 patients (26.47%) in the hybrid group versus 18 patients (39.13%) in the preemptive group. Most of patients were transplanted in CR1. The median follow-up duration was 33.47 months (95% CI: 28.45-38.83). Table 1 summarizes the baseline characteristics of the patients and donors.

CMV reactivation

The hybrid prophylaxis demonstrated group a significantly lower incidence of CMV reactivation within 90 days post-transplant compared with the preemptive group [33.84% (95% CI: 20.33- 52.82) vs. 82.08% (95% CI:69.70-91.59); P = 0.000] (Figure.1). CMV reactivation occurred earlier in the preemptive group, with 74% (34/46) experiencing pre-engraftment reactivation versus 18% (6/34) in the hybrid group (P < 0.001) (Figure 2A). High-level viremia (>1,000 copies/mL) was also less frequent with hybrid prophylaxis (26% vs. 65%; P = 0.001) (Figure 2B).

Transplant outcomes

Neutrophil engraftment (absolute neutrophil count $\geq 500/\mu L$ for three consecutive days) and platelet recovery ($\geq 20,000/\mu L$ without transfusion for 7 days) were comparable between the groups. As displayed in Table 2, the cumulative incidences of PLT engraftment on day 30 were comparable between the hybrid [81.55% (95% CI, 66.82- 92.49)] and preemptive groups [77.73% (95% CI, 64.80- 88.48)], P=0.38. The preemptive group had a neutrophil engraftment incidence of 84.78% (95% CI, 73.03-93.31) at day 30, as compared with the hybrid group [88.56% (95% CI, 74.25- 96.87)], p = 0.33.

Regarding mean (\pm SD) time to platelet or neutrophil recovery, there was no statistically significant difference between the two groups. It was 23.00 (\pm 17.72) and 18.65 (\pm 14.4) days for platelet or neutrophil recovery in the preemptive group and 20.00 (\pm 9.74) and 16.44 (\pm 12.89) days in the hybrid group.

As shown in Table 2, the hybrid regimen recipients demonstrated a slightly superior 2-year OS to those administered the preemptive regimen, although the difference was not statistically significant (64.45% (95% CI: 45.94-78.03) vs. 60.55% (95% CI: 44.87-73.04), P= 0.75). Similarly, despite the higher probability rates of DFS and GFRS observed in the hybrid group than the preemptive group, these differences did not reach statistical significance (61.38% (95% CI: 42.91-75.46) vs. 56.1% (95% CI: 40.54-69.07), P= 0.55 for DFS and 33.83% (95% CI: 17.66-50.79) vs. 13.28% (95% CI: 5.09-25.44), P= 0.10 for GRFS).

In terms of GVHD, 9.68% (95% CI: 3.12-30.04) of the patients in the hybrid group developed grade III-IV acute GVHD, which was lower than the 14.39% (95% CI: 6.46-32.08) reported in the preemptive group, although this difference was not statistically significant (P = 0.59). Moreover, the cumulative incidence of extensive cGVHD during the two years was comparable between the groups (16.17% (95% CI: 6.04-43.30) for the hybrid group vs. 17.98% (95% CI: 7.39-43.74) for the preemptive group, P= 0.96) (Table 2).

Furthermore, the 2-year NRM rates also did not significantly differ between the two groups, although the hybrid cohort showed diminished rates compared to the preemptive group (17.85% (95% CI: 8.44-35.5) vs. 24.56% (95% CI: 14.37-40.06), P= 0.47)

(Table 2). Additionally, the groups did not show any significant differences regarding the causes of death. Relapse was the leading cause of death in both groups, followed by infection.

Table 1. Baseline characteristics of high-risk allo-HSCT recipients stratified by CMV prophylaxis strategy

Protocol		Pre-emptive therapy	Hybrid prophylactic	Р
Total, No (%)		46 (57.5)	34 (42.5)	
Median age, yr (range)		31.5 (25-39)	29.5 (23-41)	0.87
Male/female, No (%)		27/19 (58.7/41.3)	19/15 (55.88/44.12)	0.46
Donor type, No (%)	MOD	3 (6.52)	3 (8.82)	0.57
	MUD	18 (39.13)	9 (26.47)	
	Haplo	25 (54.35)	22 (64.71)	
	1locus mismatched	7 (15.22)	5 (14.71)	0.52
Match status, No (%)	Full match	14 (30.43)	7 (20.59)	
	Haploidentical	25 (54.35)	22 (64.71)	
Drive and discount No. (0)	ALL	16 (34.78)	14 (41.18)	0.64
Primary disease, No (%)	AML	30 (65.22)	20 (58.82)	
Disease status, No (%)	CR1	26 (56.52)	18 (52.94)	0.77
	CR2	15 (32.61)	12 (35.29)	
	CR3	5 (10.87)	4 (11.76)	

Abbreviations: allo-HSCT, allogeneic hematopoietic stem cell transplantation; MOD, matched other related donor; MUD, matched unrelated donor; Haplo, haploidentical donor; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CR, complete remission

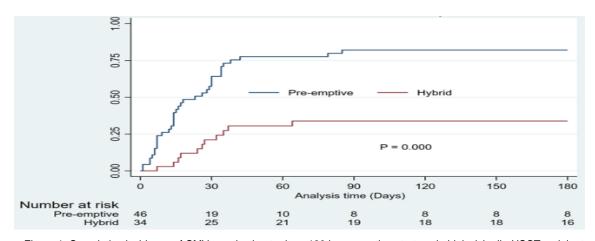
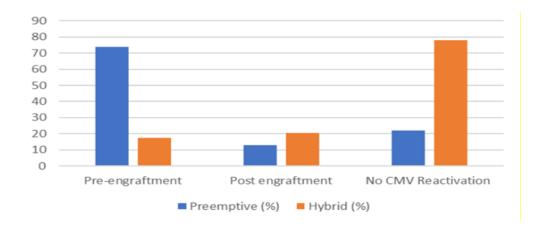



Figure 1. Cumulative incidence of CMV reactivation to day +180 by prevention strategy in high-risk allo-HSCT recipients (n = 80). P was determined by the Gray test.

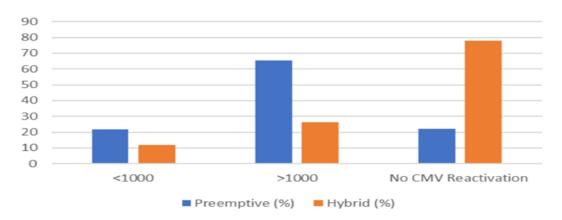


Figure 2. CMV reactivation characteristics by prophylaxis strategy. (A) Percent of CMV reactivation based on pre- and post-engraftment. (B) Distribution of CMV DNAemia levels (threshold: 1,000 copies/mL). Percentages reflect proportions within each group.

Table 2. Outcomes of high-risk allo-HSCT recipients by the CMV prophylaxis strategy

Protocol	•	Pre-emptive therapy	Hybrid prophylactic	Р
Probability of OS (95% CI)	1-year	65.22 (49.64-77.04)	70.59 (52.24-82.96)	0.75
	2-year	60.55 (44.87-73.04)	64.45 (45.94-78.03)	
Probability of DFS (95% CI)	1-year	63.04 (47.46-75.16)	70.59 (52.24-82.96)	0.55
	2-year	56.1 (40.54-69.07)	61.38 (42.91-75.46)	
Probability of GRFS (95% CI)	1-year	33.06 (19.89-46.83)	41.35 (23.91-57.99)	0.10
	2-year	13.28 (5.09-25.44)	33.83 (17.66-50.79)	
Cum Incidence of NRM (95% CI)	1-year	21.86 (12.41-36.84)	17.85 (8.44-35.5)	0.47
	2-year	24.56 (14.37-40.06)	17.85 (8.44-35.5)	
Cum Incidence of 3-month CMV Reactivation (95% CI)		82.08 (69.70-91.59)	33.84 (20.33- 52.82)	0.00
Cum Incidence of aGVHD (III-IV) (95% CI)		14.39 (6.46-32.08)	9.68 (3.12-30.04)	0.59
Cum Incidence of Extensive cGVHD		17.98 (7.39-43.74)	16.17 (6.04-43.3)	0.96
(95% CI)				
Cum Incidence of Neutrophil engraftment at 28 days (95% CI)		84.78 (73.03-93.31)	88.56 (74.25-96.87)	0.33
Cum Incidence of PLT engraftment at 28 days (95% CI)		77.73 (64.80-88.48)	81.55 (66.82-92.49)	0.38

DISCUSSION

CMV infection remains a significant challenge for allo-HSCT recipients, particularly among CMV-seropositive individuals. This study compared the efficacy of a hybrid CMV prophylaxis regimen, consisting of pre-transplant ganciclovir followed by high-dose valacyclovir, with a standard pre-emptive strategy. The results demonstrated that the hybrid prophylaxis regimen significantly reduced CMV reactivation rates at 90 days post-transplantation and during the pre-engraftment period compared to the standard preemptive regimen without impacting OS, DFS, GVHD, or NRM. These findings align with and add to the growing body of literature on CMV prophylaxis.

While several studies have indicated the efficacy of prophylactic agents in reducing primary CMV infection and reactivation following transplantation, assessing their overall advantage has been difficult¹⁴. Similar to our results, a previous study reported that umbilical cord blood transplantation recipients administered the intensive regimen (pretransplant ganciclovir in combination with 2 g valacyclovir three

times daily from day -1 through day +100) showed a significantly lower rate of CMV reactivation in comparison to the patients treated with the standard pre-emptive strategy ²⁶.

In various HSCT populations, the use of ganciclovir before transplantation has been found to decrease CMV complications ²⁷⁻³⁰ and is thought to reduce the occurrence of early CMV reactivation following transplantation ³⁰. This outcome suggests that hybrid prophylaxis regimens are effective in reducing CMV reactivation in high-risk HSCT populations. Moreover, Hill et al. reported no significant differences in reactivation rates when comparing a modified intensive strategy to the original approach, indicating that both pre-transplant ganciclovir and high-dose valacyclovir contribute to lowering CMV reactivation³¹.

The lower incidence of high-level viremia (CMV DNAemia > 1000 copies/ml) observed in our hybrid group (26.47% vs. 65.22% in the preemptive group, P = 0.001) echoes findings from Milano et al., which showed a reduction in high-level CMV viremia in intensive prophylaxis recipients²⁶, suggesting a

potential protective effect against the progression to overt CMV disease. Additionally, Hammerstrom et al. reported similar reductions in CMV reactivation among intensified prophylaxis recipients, supporting our results that hybrid prophylaxis may be effective in preventing significant CMV replication and its associated complications³².

Consistent with previous studies mentioned above^{26,32}, the present study also reported that the choice of CMV prophylaxis strategy did not impact HSCT outcomes, suggesting that while the hybrid regimen effectively reduces CMV reactivation, it does not alter the long-term survival as well as the risk of GVHD (acute or chronic) and NRM in HSCT recipients.

Considering the toxicities related to the antiviral medications used in the prophylaxis regimens, it has been proposed that the administration of intermediate-dose valacyclovir during the periengraftment period may result in graft failure^{27,33}, though not previously reported in the literature. In our study, only one patient in the preemptive group developed graft failure, and the two groups did not differ in this regard. Similarly, previous studies using intermediate to high-dose valacyclovir also did not reveal any potential impact of higher doses of valacyclovir on the incidence of graft failure^{26, 32}.

addition to clinical efficacy, economic considerations are crucial when selecting CMV prevention strategies, particularly in resourceconstrained environments. Letermovir, an approved agent for CMV prophylaxis, has demonstrated efficacy in reducing clinically significant CMV infection and possesses a favorable safety profile. However, its high acquisition cost and limited availability in many healthcare settings may restrict its widespread adoption. In contrast, the hybrid regimen evaluated in this study utilizes established, widely accessible antivirals at substantially lower cost. Although our study did not include a formal pharmacoeconomic analysis, the significantly reduced incidence of CMV reactivation observed with the hybrid strategy, combined with the affordability of its components, suggests a potentially cost-effective alternative to Letermovir in recipients. high-risk HSCT Future incorporating detailed cost-effectiveness modeling is warranted to quantify the economic and clinical value of this approach relative to novel antiviral agents or adoptive T-cell therapy, especially for resistant CMV infections³⁴.

Our study's strengths can be attributed to its prospective design, balanced distribution of patients in two groups according to the baseline characteristics, and the inclusion of only high-risk patients for CMV reactivation. Nevertheless, the single-center small study population, missing molecular tests and disease risk stratification, and lack of data on CMV disease limit our analysis's findings.

CONCLUSION

The findings of this study suggest that a hybrid CMV prophylaxis regimen consisting of pre-transplant ganciclovir and high-dose valacyclovir is effective in reducing CMV reactivation without adversely impacting overall transplant outcomes, such as survival, GVHD, or NRM. These results are consistent with previous research, indicating that intensive prophylaxis strategies can be an effective alternative to standard CMV prophylaxis in high-risk HSCT recipients. Future research, including larger randomized controlled trials, is warranted to confirm these findings and further refine CMV prophylaxis strategies in allogeneic HSCT settings.

Ethics approval and consent to participate: The trial was performed under the Declaration of Helsinki and Good Clinical Practice. It was approved by the Ethics Committee of HORCSCT (IR.TUMS.HORCSCT.REC.1401.016), and written informed consent was obtained from the patients before enrollment.

Consent for Publication: not applicable.

Data Availability: All datasets produced or analyzed during this investigation are included in the published article.

CONFLICT OF INTEREST

The authors declare no conflicts of interest. No commercial or financial relationships that could influence the research were present during this study.

Funding: This work received principal support from the Cell Therapy and Stem Cell Transplantation Research Center at Shariati Hospital, affiliated with Tehran University of Medical Sciences (HORCSCT).

ACKNOWLEDGMENTS

We acknowledge our colleagues for their clinical expertise, the data registry team for their instrumental role in data provision, and the patients whose participation formed the foundation of this study.

REFERENCES

- 1. Dziedzic M, Sadowska-Krawczenko I, Styczynski J. Risk factors for cytomegalovirus infection after allogeneic hematopoietic cell transplantation in malignancies: proposal for classification. Anticancer Res. 2017;37(12):6551-6.
- 2. Styczyński J. ABC of viral infections in hematology: focus on herpesviruses. Acta Haematol Pol. 2019;50(3):159-66.
- 3. Vallejo M, Muñiz P, Kwon M, et al. Risk prediction of CMV reactivation after allogeneic stem cell transplantation using five non-HLA immunogenetic polymorphisms. Ann Hematol. 2022;101(7):1567-76.
- 4. Barkhordar M, Kasaeian A, Janbabai G, et al. Modified combination of anti-thymocyte globulin (ATG) and post-transplant cyclophosphamide (PTCy) as compared with standard ATG protocol in haploidentical peripheral blood stem cell transplantation for acute leukemia. Front Immunol. 2022;13:921293.
- 5. Teira P, Battiwalla M, Ramanathan M, et al. Early cytomegalovirus reactivation remains associated with increased transplant-related mortality in the current era: a CIBMTR analysis. Blood. 2016;127(20):2427-38.
- 6. Kollman C, Howe CW, Anasetti C, et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood. 2001;98(7):2043-51.
- 7. Ljungman P, Brand R, Einsele H, et al. Donor CMV serologic status and outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation: an EBMT megafile analysis. Blood. 2003;102(13):4255-60.

 8. Ljungman P, Brand R, Hoek J, et al. Donor cytomegalovirus status influences the outcome of

- allogeneic stem cell transplant: a study by the European group for blood and marrow transplantation. Clin Infect Dis. 2014;59(4):473-81.
- 9. Broers AE, van der Holt R, van Esser JW, et al. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell–depleted stem cell transplantation. Blood. 2000;95(7):2240-5.
- 10. Einsele H, Hebart H, Kauffmann-Schneider C, et al. Risk factors for treatment failures in patients receiving PCR-based preemptive therapy for CMV infection. Bone Marrow Transplant. 2000;25(7):757-63.
- 11. Goldsmith SR, Abid MB, Auletta JJ, et al. Posttransplant cyclophosphamide is associated with increased cytomegalovirus infection: a CIBMTR analysis. Blood. 2021;137(23):3291-305.
- 12. Jamy O, Hebert C, Dunn-Valadez S, et al. Risk of cytomegalovirus infection with post-transplantation cyclophosphamide in haploidentical and HLA-matched unrelated donor transplantation. Transplant Cell Ther. 2022;28(4):213. e1-. e6.
- 13. Meijer E, Boland Greet J, Verdonck Leo F. Prevention of Cytomegalovirus Disease in Recipients of Allogeneic Stem Cell Transplants. Clin Microbiol Rev. 2003;16(4):647-57.
- 14. Chen K, Cheng MP, Hammond SP, et al. Antiviral prophylaxis for cytomegalovirus infection in allogeneic hematopoietic cell transplantation. Blood Adv. 2018;2(16):2159-75.
- 15. Reed DR, Petroni GR, West M, et al. Prophylactic pretransplant ganciclovir to reduce cytomegalovirus infection after hematopoietic stem cell transplantation. Hematol Oncol Stem Cell Ther. 2023;16(1):61-69.
- 16. Bacigalupo A, Tedone E, Van Lint M, et al. CMV prophylaxis with foscarnet in allogeneic bone marrow transplant recipients at high risk of developing CMV infections. Bone Marrow Transplant. 1994;13(6):783-8.
- 17. Bregante S, Bertilson S, Tedone E, et al. Foscarnet prophylaxis of cytomegalovirus infections in patients undergoing allogeneic bone marrow transplantation (BMT): a dose-finding study. Bone Marrow Transplant. 2000;26(1):23-9.
- 18. Burns L, Miller W, Kandaswamy C, et al. Randomized clinical trial of ganciclovir vs acyclovir for prevention of cytomegalovirus antigenemia after allogeneic transplantation. Bone Marrow Transplant. 2002;30(12):945-51.
- 19. Freyer CW, Carulli A, Gier S, et al. Letermovir vs. highdose valacyclovir for cytomegalovirus prophylaxis following haploidentical or mismatched unrelated donor allogeneic hematopoietic cell transplantation receiving

- post-transplant cyclophosphamide. Leuk Lymphoma. 2022;63(8):1925-33.
- 20. Imlay HN, Kaul DR. Letermovir and maribavir for the treatment and prevention of cytomegalovirus infection in solid organ and stem cell transplant recipients. Clin Infect Dis. 2021;73(1):156-60.
- 21. Frange P, Leruez-Ville M. Maribavir, brincidofovir and letermovir: Efficacy and safety of new antiviral drugs for treating cytomegalovirus infections. Med Mal Infect. 2018;48(8):495-502.
- 22. Piret J, Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral Res. 2019;163:91-105.
- 23. Barkhordar M, Kasaeian A, Tavakoli S, et al. Selection of suitable alternative donor in the absence of matched sibling donor: A retrospective single-center study to compare between haploidentical, 10/10, and 9/10 unrelated donor transplantation. Int J Hematol Oncol Stem Cell Res. 2021;15(1):51-60.
- 24. Glucksberg H, Storb R, Fefer A, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HLA-matched sibling donors. Transplantation. 1974;18(4):295-304.
- 25. Filipovich AH, Weisdorf D, Pavletic S, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11(12):945-56.
- 26. Milano F, Pergam SA, Xie H, et al. Intensive strategy to prevent CMV disease in seropositive umbilical cord blood transplant recipients. Blood. 2011;118(20):5689-96.
- 27. Winston DJ, Ho WG, Bartoni K, et al. Ganciclovir prophylaxis of cytomegalovirus infection and disease in allogeneic bone marrow transplant recipients: results of a placebo-controlled, double-blind trial. Ann Intern Med. 1993;118(3):179-84.
- 28. Kline J, Pollyea D, Stock W, et al. Pre-transplant ganciclovir and post-transplant high-dose valacyclovir reduce CMV infections after alemtuzumab-based conditioning. Bone Marrow Transplant. 2006;37(3):307-10.
- 29. Atkinson K, Downs K, Golenia M, et al. Prophylactic use of ganciclovir in allogeneic bone marrow transplantation: absence of clinical cytomegalovirus infection. Br J Haematol. 1991;79(1):57-62.
- 30. Verma A, Devine S, Morrow M, et al. Low incidence of CMV viremia and disease after allogeneic peripheral blood stem cell transplantation. Role of pretransplant ganciclovir and post-transplant acyclovir. Bone Marrow Transplant. 2003;31(9):813-6.
- 31. Hill JA, Pergam SA, Cox E, et al. A modified intensive strategy to prevent cytomegalovirus disease in

- seropositive umbilical cord blood transplantation recipients. Biol Blood Marrow Transplant. 2018;24(10):2094-100.
- 32. Hammerstrom AE, Lombardi LR, Pingali SR, et al. Prevention of cytomegalovirus reactivation in haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 2018;24(2):353-8.
- 33. Ljungman P, de la Camara R, Milpied N, et al. Randomized study of valacyclovir as prophylaxis against cytomegalovirus reactivation in recipients of allogeneic bone marrow transplants. Blood. 2002;99(8):3050-6.
- 34. Taherian MR, Azarbar P, Barkhordar M, et al. Efficacy and safety of adoptive T-cell therapy in treating cytomegalovirus infections post-haematopoietic stem cell transplantation: A systematic review and meta-analysis. Rev Med Virol. 2024;34(4):e2558.