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ABSTRACT 
The microbiota is directly involved in the host metabolic process, as well as in immune response modulation and 
recruitment of different cells typology in the inflammatory site. Human microbiota modification (dysbiosis) is a 
condition which could be correlated with various pathologies. The short-chain fatty acids produced by the 
metabolic process have an important role as immune mediators. In hematology field, dysbiosis can represent a 
predisposing condition for triggering and/or conditioning both non-neoplastic (iron deficiency anemia, 

thrombosis, thrombocytosis or thrombocytopenia) and neoplastic disorders (lymphomas, leukemias, myeloma). 
Dysbiosis may also interfere on therapy efficacy (iron supplementation, chemotherapy, immunotherapy, and 
hematopoietic stem cell transplantation), impacting on patient's outcome. 
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INTRODUCTION 
   The microbiota represents the most conspicuous 
part of micro-organisms present in the human body. 
Microbiota composition is estimated to be more 
than 10 times the total number of human cells and it 
resides principally (99%) in gastrointestinal tract, 
colon and small intestine 1,2. The microbiota changes 
more or less significantly and rapidly; genetic factors, 
antibiotic therapy, immune response and occasional 
infections influence microbiota composition.  
Functionally, the microbiota is involved principally 
on maturation, regulation and modulation of 
immune system, as well as on vitamins (folic acid, 
vitamin K and group B vitamins), and amino acids 
production. 
The terms microbiota and microbiome are often 
interchangeable. The microbiome is the set of micro-
organisms found in the specific environment 

(bacteria, viruses and fungi); the microbiota is the set 
of genomes of all micro-organisms present in the 
environment. 
About 60% - 70% of bacteria located in the human 
intestinal tract cannot currently be cultured with the 
available methods3. DNA sequencing technologies 
(metagenomics) investigates both the genes 
expressed by microbiota and the interactions 
between bacteria and multicellular organisms. By 
16S rRNA genomic sequencing we can identify a 
single bacterial species; moreover, microbiome gene 
study identifies molecules that autonomously are 
not synthesized 4, 5.  
The microbiota plays an important metabolic role 
producing short-chain fatty acids (SCFAs), as well as 
the increase in proteolytic activity. The SCFAs have 
an important role as metabolic and immune 
mediators; in elderly people their decrease favors 
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the intestinal age-related inflammation process6, 7. 
The interaction between commensal microbiota and 
immune system is crucial for a proper immune 
function 8. Microbiota transitional change from 
eubiosis to dysbiosis condition can increase the 
incidence of cardiovascular, inflammatory, 
neurological, psychological, oncological and 
metabolic pathologies9,10 (Figure 1). 
 
Microbiota and hematopoiesis 
The normal hematopoiesis process is regulated by 
growth factors and cytokines that act as extrinsic 
regulators, while the epigenetic and transcriptional 
factors act on the hematopoiesis as intrinsic 
regulators. The two regulatory processes, normally, 
allow the hematopoietic stem cells (HSC) 
differentiation towards hematopoietic progenitor 

cells (HPC), up to the mature circulating cells (Figure 
2). The microbiota, through the Stat1 signal, can 
affect hematopoiesis.  
In the context of hematopoietic process, the 
microbiota can play a role in hematological and 
onco-hematological pathologies. The intestinal 
microbiome imbalance, dysbiosis, can promote the 
suppression of hematopoiesis. In inflammatory 
bowel diseases (IBD), which are characterized by 
commensal intestinal bacteria imbalance, a 
condition of non-drug dependent aplastic anemia 
can occur11,12. Table 1 reports the correlation 
between microbiota and some of the most frequent 
onco-hematologic pathologies, specifying the 
microbial populations involved or suspected and 
their mechanisms 13. 

 
 
 
 

 
Figure 1. Dysbiosis and incidence of critical pathologies 
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Figure 2. Interaction between gut microbiota and hematopoiesis 

(HSC = Hematopoietic Stem Cell; HPC = Hematopoietic Progenitor Cell) 

 

 

 

 

Table 1: Onco-hematological diseases and microbiota correlation. Main microbes involved or suspected and their possible pathogenetic 
mechanism 

Onco-hematologic 
disease 

Microbe involved 
or suspected 

Mechanism 

 
Acute lymphoblastic 

leukemia 

Prevotella, Bacteroides Roseburia, Ruminococcus 2, 
Anaerostipes, Coprococcuss, Faecalibacterium, Aerococcaceae 
and Carnobacteriaceae, Firmicutes, Lactobacillales, Abiotrophia, 

Granulicatella, Bacilli 

Immune system dysregulation 
through IL-6, 

HLA-DR+CD4+ and 
HLA-DR+CD8+ T cells 

 
Hodgkin lymphoma 

 
Gut microorganisms during childhood 

Immunological alterations: 
< Th1 and > Th2, 

> IgE, < NK, < T-CD8+ 

 
Non-Hodgkin lymphoma 

 
Helicobacter spp., gut microorganisms, Chlamidia psitacci, 

Campylobacter jejuni, Borrelia bergdorferi, Streptococcus bovis; 
HCV, HTLV-1 

Abnormal DNA replication due to 
increase of 

B-ymphocyte growth 
Oxidative stress 

Oncogenic activation 

 
 

Chronic lymphocytic 
leukemia 

 
 

Anti-gram-positive antibiotics 

Antagonism of antitumor activity of 
cisplatin [causes ROS-mediated-
cell death] and cyclophosphamide 
[that activates T-helper antitumoral 

response] 
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Microbiota and anemia 
Anemia is the most frequent symptom in patients 
with hemopathies, as well as in several non-
hematological diseases that influence the 
hematopoiesis.  
In anemia, the correlation between red blood cell 
production and microbiota is possible. In aplastic 
anemia there may be association with infections, 
such as viral hepatitis (e. g. A, B, C, E and G), 
Cytomegalovirus (CMV), Epstein-Barr virus (EBV) and 
parvovirus B19 infections.  
In anemia of chronic inflammation, supported also 
by bacteria, the cytokines production influences the 
hepcidin expression and, consequently, iron 
homeostasis alteration14. In some cases, infections 
due to specific types of bacteria can influence the 
hepcidin expression directly15. In both cases there 
may be a close correlation with microbiota 
alterations.  
If bacterial infections can influence iron homeostasis, 
the opposite is also true. In fact, hemochromatosis16 
and chronic hemolytic anemias17 can predispose the 
patients to bacterial infections.  
 
Iron supplementation and microbiota 
Iron is a vital element for most living organisms. It is 
essential not only for humans, but also for 
replication and survival of almost all bacteria, 
moreover, its "host-microbiota" relationship is 
direct. 
In the proximal colon, the main iron transporter, 
divalent metal transporter 1 (DMT1), is located on 
the surface of the apical cells. This anatomical-
functional localization is significant to increase the 
iron availability in the large intestine, which is rich in 
bacteria 18, 19. 
When we give oral iron, expansion of specific enteric 
pathogens species can occur. Consequently, the 
beneficial proportion of microbiota can decrease and 
gastrointestinal inflammatory disorders can trigger. 
Moreover, oral iron can increase the production of 
reactive oxygen species (ROS); the oxidative stress 
activates the immune system in the host and cause 
inflammatory intestinal epithelial damage, a 
condition that predisposes to infection 20, 21, 22, 23, 24, 25. 
 
 

Microbiota and platelets  
Changes in both circulating platelet turnover and 
their concentration are uniquely influenced by 
microbial organisms during infections.  
The association between H. pylori and immuno-
thrombocytopenia (ITP) is known. Platelet activation 

occurs through H. pylori antibody FcIIA, or through 
the interaction H. pylori bound von Willebrand factor 
(vWF) and platelet glycoprotein IB 26. 
CMV and varicella zoster virus can also give 
thrombocytopenia. CMV directly infects platelets 
and triggers an ITP-like syndrome in 
immunocompromised patients27. Furthermore, in 
case of CMV infection there may be an important 
congenital platelet disorder, or the cytopenia may 
result from delayed platelet recovery after bone 
marrow transplantation. 
In Hepatitis-C virus (HCV) infection the incidence of 
ITP is high and the pathophysiology is complex and 
multifactorial28. 
Patients with bacterial infection or sepsis show high 
levels of inflammatory cytokines, mainly IL-6, and 
subsequently an increase in circulating platelet 
count29. 
 
Microbiota and thrombosis 
The direct correlation between coagulation and 
inflammation is known30. The intestinal bacterial 
flora can play a critical role in various inflammatory 
pathologies and trigger, directly or indirectly, a 
thrombotic condition (Figure 3). 
The glycolipids (lipopolysaccharides) present on the 
outer membrane of gram-negative bacteria 
represent an important link between intestinal 
bacterial flora and hypercoagulability. Through this 
specific links, lipopolysaccharides activate both 
endothelial cells and platelets receptors and trigger 
the coagulation cascade31. 
The intestinal metabolization of certain foods 
produce metabolites, such as trimethylamine 
nitroxide (TMAO), which activate platelets and 
increase the possibility of cardiovascular diseases 
(CVD) (Figure 3). The administration of new choline 
analogues, modulate the intestinal bacterial flora 
and, consequently, the production of both 
lipopolysaccharades and TMAO. This could represent 
a new approach for atherothrombotic risk 
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reduction32. Since SCFAs regulate blood pressure, the 
altered conversion by intestinal microbiota from 
polysaccharades into SCFAs can cause problems on 
blood pressure regulation, increasing CVD risk. 

 

 
 
 
 

 
 

Figure 3. Nutrition, gut microbiota and risk of atherosclerosis, cardiovascular disease and thrombosis 
TMA =Trimethylamine; TMAO = Trimethylamine nitroxide; FMOs = Flavin-monooxygenase enzymes; CVD = Cardiovascular disease; SCFA = 

Short Chain Fatty Acids; TLR = Tool Like Receptor; vWF = von Willebrand Factor; PLT = Platelets; LPS = Lipopolysaccharides 

 

Microbiota and lymphomas 
Dendritic cells and/or antigen-presenting cells (APC) 
constantly send signals to the immunologically active 
cells which belong to the mucosa-associated 
immune system. The immune response due to the 
intestinal microbial colonization causes the 
lymphocyte population to expand towards a 
tolerance or activation condition33. 
In H. pylori infection, the constant antigen 
presentation stimulation causes B-cell expansion34,35. 
MALT-lymphomas are associated with H. pylori 
infection in about 90% of cases36,37, its eradication 
causes complete gastric lymphoma remission in 
about 80% of patients38. 
Beyond H. pylori, also H. helmanii, present in both 
humans and mice, can cause MALT-lymphoma and  

 
 
 
its presence has been detected in other chronic 
inflammatory conditions such as rheumatoid 
arthritis and colitis39. 
Cutaneous B-Cell non-Hodgkin lymphoma in Borrelia 
burgdorferi seropositivity have also been 
reported40,41. 
 
Microbiota and leukemia 
Acute lymphoblastic leukemia (ALL) is the most 
common onco-hematological pathology in 
pediatrics. There may be a correlation with the onset 
of leukemia, according to the type of birth, at term 
or by cesarean section, when the newborn is 
exposed to vaginal bacteria 42. The mutual influence 
between immune system and exposure to microbial 
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infections, both in utero and during childhood, in 
various studies are reported43,44,45,46,47. Furthermore, 
factors related to the microbiota colonization 
(breastfeeding and vaginal delivery) [48] or 
infections diagnosed before the diagnosis of 
leukemia, could affect the risk of childhood 
leukemia49,50. 
In newborns with ALL the high concentration of 
inflammatory markers is the evidence of a close 
correlation between immune system, expansion of B 
or T-cells and development of childhood leukemia43.  
Children in developing age, as well as children who 
are cancer survivors51, in case of unhealthy eating 
habits (e. g. high fat intake, sodium, sweets and low 
fruit, vegetable intake) or on antibiotics therapy, 
show intestinal microbiota composition alteration, 
weight increase and possible onset or neoplasms 
restart 52, 53, 54, 55, 56, 57. 
ALL adults in remission, generally, have problems 
several years after treatment. In those cases, the 
anal microbiota can change (dysbiosis) showing a 
reduced microbial diversity (increase Actinobacteria, 
decrease Faecalibacterium), and consequent 
immune alteration (altered levels of C reactive 
protein, IL-6, CD4+ and CD8+ T- cell) 58. 
In acute myeloid leukemia (AML) the most isolated 
microorganism is the Heterogeneous Viridans 
streptococci, a gram-positive cocci 59. 
An important specific action on leukocytes is showed 
by the interaction with leukotoxin A (LtxA) which is 
generated by the oral Aggregatibacter 
actinomycetem comitans bacterium. In patients with 
AML, the LtxA protein both in vivo and in vitro 
eliminate leukemic cells, while cells from healthy 
subjects are resistant to LtxA mediated 
cytotoxicity60.  
Within the hematopoietic differentiation process, an 
important function is supported by the exotoxin 
Panton-Valentine-Leukocidin (PVL) secreted by the 
Staphylococcal synergohymenotropic. It causes the 
lysis of the human polymorph nucleated, monocytes 
and macrophages and induces leukemic cells 
differentiation 61, 62, 63. 
In Chronic Lymphocytic Leukemia (CLL) patients on 
concomitant antineoplastic and anti-gram-positive 
antibiotic therapy, they may show reduction in 

progression-free survival (PFS) and overall survival 
(OS) in case of significant intestinal dysbiosis 64. 
In the context of extracolonic neoplastic pathologies, 
the association between Streptococcus bovis with 
chronic myeloid leukemia (CML) and CLL has also 
been described 65. 
 
Microbiota and Multiple Myeloma 
The plasma cell subclones expansion that 
characterize the progression of Monoclonal 
Gammopathy of Undetermined Significance (MGUS) 
towards Multiple Myeloma (MM) can be triggered by 
interaction between neoplastic plasma cells genetic 
changes and immune microenvironment66. A 
preclinical study has shown that Prevotella 
heparinolytica promote Th17 cells differentiation67. 
Th17 cells, which colonize the intestine, migrate 
towards the bone marrow favoring progression in 
MM. In Vk*MYC mice, either the lack of microbiome 
alteration or IL-17 deficiency delay progression in 
MM. High levels of IL-17 in bone marrow accelerate 
the progression of Smoldering Multiple Myeloma 
(SMM) towards MM. In addition, IL-17 induces 
plasma cell STAT3 phosphorylation and activates 
eosinophils. Blocking IL-17, IL-17RA and IL-5 through 
antibodies, both Th17 and eosinophils accumulation 
in bone marrow is reduced; consequently, the 
evolution towards an open MM is delayed. Probably, 
abnormal paracrine signals emission between 
adaptive and innate immunity through commensal 
bacteria accelerates the progression towards MM. 
The development of these studies may address 
towards the use of further targeted therapies. 
 
Microbiota and hematopoietic stem cell 
transplantation 
In allogeneic hematopoietic stem cell 
transplantation (aHSCT) the graft vs host disease 
(GvHD) morbidity is high (30% - 70%), with systemic 
and local complications [68]. GvHD involves organs 
in which there is a specific microbiota/epithelium 
interaction such as intestine, mouth and skin, eyes 
and lung, or the liver, in the latter the contiguity with 
the microbiome is ensured by the portal circulation. 
The microbiota/epithelium barrier integrity, in 
particular the intestinal one, plays an important role 
both in the immune homeostasis and GvHD trigger69. 
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The intestinal epithelium damage, as well as the 
mucus integrity that covers it, exposes bacteria, 
bacterial products (lipopolysaccharide) and 
epithelial cells degeneration products to the antigen-
presenting cells (APC). The consequent activation of 
alloreactive T cells donor causes an inflammatory 
condition with release of cytokines and damage of 
target organs. 
Studies have highlighted the correlation between 
Blautia microorganisms and changes in microbiota 
structure, onset of GvHD and improvement of 
transplanted cells engraftment70.  
To limit the onset of GvHD it may also be appropriate 
to restore the intestinal microbiome diversity with 
the aim of increasing engraftment after 
transplantation. Probiotic microorganisms can 
modify the intestinal microflora and mediate anti-
inflammatory activity The probiotic microorganism 
Lactobacillus rhamnosus GG would improve acute 
GvHD 71,72. Restoration of microbiome diversity in 
patients undergoing aHSCT have been carried out by 
normal fecal microbiome transplanting (FMT); the 
outcomes in some cases appear to be promising 73. 
 
Microbiota and chemotherapy 
Chemotherapy (CHT) generally causes major 
gastrointestinal problems and, significantly, 
immunosuppression with febrile infection and 
bloodstream infection. The resulting antibiotic 
therapy causes microbiome alteration and dysbiosis. 
Bacterial species reduction in microbiome can 
influence the antitumor effect of some drugs and the 
possible anti-tumor drug effect74 Doxorubicin 
antitumor action can be decreased by E. coli and 
Parabacteriodes distasonis75, as well as the 
Lactobascillus acidophilus which can reduce the 
cispatin activity74. A modulating action on 5-FU 
activity is possible through the bacterial production 
of Vit. B6 and Vit. B975. A critical role on 
cyclophosphamide antitumor activity can be played 
by Barnesiella intestinihominis and Enterococcus 
hirae, in fact their removal causes resistance to 
cyclophosphamide 75. Fusobacterium nucleatum, by 
selective loss of miR-18a* and miR-4802 via TLR4 and 
MYD88, triggers an autophagic process as well as 
chemoresistance 75.  
 

Microbiota and immunotherapy 
Even in case of immunotherapy the intestinal 
microbiome can modify the tumor response 75, 76. 
Treatment response and tumor immunity 
improvement could depend by bacteria type, as well 
as the intestinal microbiome diversity 77.  
In patients with melanoma and responsive to anti-
PD1 therapy, the analysis of fecal samples found a 
high presence of bacteria belonging to the 
Ruminococcaceae family 78. Patients with advanced 
melanoma and resistant to immune checkpoint 
inhibitor therapy, can show a significant response to 
therapy after FMT. In these cases, FMT determines 
both immune and therapeutic response with a 
significant recognition and killing of neoplastic 
cells79.  
 
CONCLUSION 
   The aim of this review is to report the main 
interactions between microbiota and both 
hematological and onco-hematological diseases. In 
hematological clinical studies the prognostic and 
therapeutic aspects related to the microbiome 
variations not always are systematically reported. 
Generally, this possible particular correlation is 
referred as case reports, and the number of patients 
often is limited. Furthermore, the microbiome study 
must be carried out and validated in specialized 
laboratories. 
The microbiome analysis, for its: i) genetic diversity, 
ii) important immune activity, iii) ability to influence 
the metabolism and modulate drug interactions, 
could allow us to understand the correlation 
between intestinal microflora changes and trigger or 
modify multidisciplinary pathologies, not only in 
hematologic field. 
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