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Background: Diabetes is a serious global health problem, and effective methods for its prediction and management are
essential. Conventional diagnostic approaches typically rely on tests such as oral glucose tolerance test (OGTT), fasting
plasma glucose (FPG) and glycated hemoglobin (HbAlc). Machine learning has the potential to enhance diagnostic
accuracy; however, its performance and alignment with clinical guidelines require thorough evaluation.

Methods: This narrative review examines the effectiveness of machine learning in the early diagnosis of diabetes.
Avrticles were selected based on predefined criteria and analyzed in terms of algorithm classification, output measures,
involvement of clinical experts, and interpretability. Evaluation metrics such as accuracy, area under the curve (AUC),
specificity and sensitivity were used to assess algorithmic performance. Relevant studies comparing prediabetes
diagnosis using artificial intelligence and conventional methods were reviewed, and clinical guidelines from both
domains were extracted and compared.

Results: Analysis of 41 articles showed that ANN, LR, and DNN were the most frequently used algorithms. Only 2%
of the studies incorporated clinical rules and physician involvement, and 12% demonstrated model interpretability. While
conventional methods rely on HbAlc and FPG tests, no clinical guidelines currently exist for Al-based diagnosis.
Machine learning algorithms outperformed traditional methods, showing 29% higher sensitivity and 23% higher
specificity.

Conclusion: Although artificial intelligence demonstrates superior performance in prediabetes diagnosis, limitations
such as lack of interpretability and the absence of standardized clinical guidelines hinder its current clinical application.
Addressing these challenges could enable Al to become a more efficient and reliable diagnostic tool.
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(1) T2FNN Black Box NO Sensitivity= 99.25% NO

(2) ANN Black Box NO Accuracy = 78.65% NO

Accuracy =86%
3) ANN Black Box NO NS5 4% NO
Accuracy =99.4%
4 XGBoost Black Box NO F1=0.99 NO
AUC=99%
SVM Black Box ouracy =B
(5) Random Forest Black Box NO Specifi citgl/;s 4. 7% NO
Gradient Boosting Black Box F1=38.0%
‘o Sensitivity=100%

(6) Decision Tree Black Box YES Specificity=80.66% NO

@) ANN Black Box NO Accuracy=90% NO
— Accuracy=77.5%

) 8 ANN Black Box NO Sensitivity =66.7% NO
7 y

by F-Measure=74.3%

©

§ 9) Random Forest Black Box NO Accuracy = 97.3% NO
c

S (10) RNN Black Box YES F1=97.3 % NO
&

(%) _ 0

£ (11) Random Forest Black Box NO Accuracy-98.95% NO

b F1-Score=99%

=

:g (12) ANN Black Box YES AUC = 82.7% YES
o

5 Accuracy=86.84%

% (13) Fuzzy Inference System Black Box NO Sensitivity=69.54% YES
o

< _ 0,

3 (14) Random Forest Black Box YES Accyra(.:y_98.73/o NO

a Sensitivity=98.01%

1) T2-ENN lack Accuracy=99.06%

15 Black Box NO Sensitivity=99.24% YES
(type-2 fuzzy system - neural networks) Specificity=99.00%

(16) ANN Black Box NO Accuracy = 78.57% NO
§ (17) ACO Black Box NO Accuracy=67.55% YES
o
0 Accuracy=91.87%

9 Sensitivity=94.15%

E (18) SVM Black Box NO Specificity=89.16% NO
= F-Measure= 88.57%

N

§ Accuracy=98.4%

pa (19) RBFNN Black Box NO Sensitivity=99.1% YES
= Specificity=94.3%

O

a
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Logistic Regression

Fuzzy Decision Tree
SB-SVM
XGBoost

Gradient Boosting

ANN
SVM
LDA
MWSVM
Decision Tree

Random Forest

SVM

ANN

SVM-RBF
SVM

Optimised-ANFIS

K-means

J48

MAIRS2

Logistic Regression

DNN

Random Forest

SVM

Random Forest

ANN

Black Box

white Box

Black Box
Black Box
Black Box
Black Box

Black Box

Black Box

Black Box

Black Box
Black Box

Black Box

Black Box

Black Box
Black Box

Black Box

Black Box

Black Box

white Box

Black Box

Black Box

Black Box

Black Box
Black Box

Black Box
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NO
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NO
NO

NO
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NO
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NO

NO

NO

F1 Score= 99%
Accuracy=94%
Sensitivity=93%
Specificity=94%
Accuracy=77%
Precision=77%
Sensitivity =77%
F-Score= 76%
AUC=83%
Accuracy=91.67%
AUC =97.15%
AUC=84%
Accuracy=86%
AUC=84.1%
Accuracy=87%

Sensitivity =93.3%
Specificity =74%

Accuracy=89.74%

Accuracy=93.75%
Accuracy=76%
Accuracy=75%

Accuracy=98.1%
AUC=98.3%
Sensitivity=98.4%
Specificity=97.5%
Accuracy = 97.14%
Accuracy =100%
Accuracy =80.47%
Accuracy = 90.04%
Sensitivity=87.27%
Specificity=91.28%
Accuracy = 89.10%
Sensitivity=85.18%
Specificity=91.50%

Accuracy =77.61%
Sensitivity=89.02 %

Accuracy=99.5%
Sensitivity=98.48%
Specificity=100%

Sensitivity =90.4%
Precision =68%

Accuracy=78.9%
AUC= 86.9%

Accuracy=98.59%

Accuracy=93.8%
ROC-AUC=96%
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(44) Random Forest Black Box NO sen'sAEtLiJ\ét:yg;OS/iS% NO
(45) Stacking Black Box NO SOty ot NO
(46) Random Forest Black Box NO Accuracy = 80.5% NO
47) LC‘;S.RI'%\J/I Black Box NO Accuracy = 98% NO
(48) Fuzzy System Black Box NO Accuracy=87.95% NO

Accuracy=75.1%
(49) Fuzzy System Black Box NO Sensitivity=73.39% NO
Specificity=78.4%

Accuracy=97.2%
(50) ANN Black Box NO Sensitivity=97.8% NO
Specificity=96.6%

Accuracy= 91.66%
(51) SW-FFANN Black Box NO Sensitivity= 85% NO
Specificity= 96.15%

(52) J48 Black Box NO Sensitivity = 95.2% NO

Accuracy= 97.87%
(53) SVM Black Box NO Sensitivity =100% NO
Specificity =95.45%

(54) ANFIS Black Box yes Accuracy = 94.5% NO

Accuracy =96.53%
(55) FFANN Black Box NO Sensitivity = 93.28% NO
F1 Score= 94.88%

§ Accuracy= 95.56%
o . F1-Score= 95.6%
& (56) Bagging Black Box NO AUC-ROC= 95.5% NO
& Sensitivity = 96.3%
c
o
= Accuracy= 77.6%
& (57) Logistic Regression white Box NO Sensitivity = 76% NO
g F1= 75%
=]
g' (58) Gradient Boosting Black Box NO Accuracy= 97.24% NO
g (59) FCS-ANTMINER Black Box NO Accuracy= 84.24% NO
% (60) Random Forest Black Box yes Accuracy= 90.43% NO
o
g (61) XGBoost Black Box NO Accuracy= 94.5% NO
o
E (62) RBFNN Black Box NO Accuracy=79.8% NO
(63) Random Forest Black Box NO Accuracy= 98.71% NO
andom Forest ack Box ccuracy= 98%
(64) Random F Black B NO A y= 98% NO
—_ (65) Ensemble Black Box NO Accuracy= 77.6% NO
% (66) Fuzzy System Black Box NO Accuracy= 90.3% NO
LE (67) SVM Black Box NO Accuracy= 97.55% NO
>
=1 i Accuracy=71.7%
§ (68) Decision Tree Black Box NO ROC=875% NO
Lo
g (69) Random Forest Black Box yes ROC=88.3% NO
—
o)
a
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(70) Random Forest Black Box yes ROC=88.3 NO

(71) XGBoost Black Box NO ROC=78.74% NO
SVM Black Box Accuracy=94.92%

(72) BRF Black Box NO Sensitivity=92.98% NO
CNN Black Box Accuracy=88.21%

(73) SVM Black Box NO Sensitivity =89.9% NO

(74) SVM Black Box NO Accuracy=96.35% NO

(75) ANN Black Box NO Accuracy=97.18% NO

(76) ANN Black Box NO Accuracy=97.44% NO

. Accuracy=90%

77) LightGBM Black Box NO AUC =94.8% NO
SVM Black Box _

(78) Random Forest Black Box NO Accuracy=88% NO

(79) DNN Black Box NO Accuracy=90.26% NO

Accuracy=92.55%
(80) HPM provided Black Box NO Sensitivity=93.40% NO
Specificity=91.74%

(81) extra trees classifier Black Box NO Accurac=97.33% NO

Accuracy=81.01%

(82) Random Forest Black Box NO Sensitivity=79.5% NO
AUC=87/1%

(83) HBGB Black Box NO Accuracy=92.2% NO
(84) ANN Black Box NO Accuracy=86.2% NO
Accuracy= 96.8%
(85) Hyper AdaBoost Black Box NO Sensitivity = 95.4% NO
AUC=98.2%
(86) LDA-based Genetic Algorithm with Black Box NO Accuracy=80.2% NO

Generalized Regression Neural Network ROC=87.5%

Accuracy= 87.5%
F1=88.3%
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(87) GHNN Black Box NO Sensitivity= 86.7% NO
Specificity= 89.2%
Accuracy= 93.6%
SIRR Sensitivity= 92.4%
(88) Convolution Trained Compositional Pattern  Black Box NO Specificity= 94.8% NO
Neural Network F1=93.0%
ROC=96.2%
Logistic Regression white Box _
(89) Decision Tree Black Box NO Accuracy=77.73% NO
(90) EFNNAO Black Box NO Accuracy=92.2% NO
3 k-NN Black Box
§ (92) Decision Tree Black Box NO Accuracy=99.2% NO
0
@ (92) DNN Black Box NO Accuracy=86.26% NO
ﬁ-
i (93)  Region-Based Support Vector Machine Black Box NO Accuracy=82.2% NO
(@}
Lo
S (94) Bagging Black Box NO Accuracy=99% NO
S
O
[a}
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Gradient Boosting Algorithm
FCM-FMM

LightGBM
Ant Colony Optimized Neural Network

ANN

ANN

Nave bayze

Logistic Regression
CNN

MLP
EFCS

(evolving fuzzy classification systems)

SVM

XGBoost

Random Forest

Random Forest

Generalized Additive Model

ResNet-18
MIL

wDD
(weighted diversity density)

Data Space Landmark Refiner

SVM

ANFIS

Random Forest

Bootstrap Forest

Black Box

Black Box

Black Box
Black Box

Black Box

Black Box

White Box
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Black Box
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YES

NO
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NO

NO

NO

NO

Accuracy=92%

Accuracy=80.96%
Sensitivity =78.79%
Specificity =70.27%

F1 Score =74.16

Accuracy=86%
Accuracy=88.35%
Accuracy=92.8%

F1 Score=0.66
Accuracy= 85%
AUC=91%

AUC=68.9%
Specificity= 71.32%

Accuracy =98%
F1=10.98
Sensitivity=97%

Accuracy= 98%

Accuracy= 97.5%
Sensitivity=75.78%
Specificity=80.97%

Accuracy= 97.22%
Sensitivity= 100%
Specificity= 95.65%

Accuracy= 75.03%

Sensitivity= 64.52%

Specificity= 75.77%
AUC=78.05%

AUC=89%
AUC=91%

Accuracy=77.6%
Sensitivity= 84%
Specificity= 76.1%
AUC=88.4%

Accuracy = 80.8%
Sensitivity= 90.2%
AUC=87.6%

AUC =91.85%

Accuracy = 98.89%
Sensitivity=98.97%

Accuracy =94.1%

Sensitivity=96.2%

Specificity =94.9%
F1=95.2%

Sensitivity= 84.91%

Specificity= 90.1%

Accuracy= 88.65%
AUC=75.9%

Specificity = 96.53%
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AUC = 99.69%
Accuracy = 97.43%

Sensitivity= 85%
117) KNN Black Box NO F1-score= 83% NG

(118) RLEFRBS Black Box NO Accuracy=76% NO

Accuracy= 89.53%
(119) MLP Black Box NO Sensitivity= 97.10% NO
Specificity= 75.62%

Sensitivity = 76%

(120) Decision Tree Black Box NO Accuracy=78% NO
Accuracy= 78.57%
(121) SVM Black Box NO Sensitivity= 70.91% NO
F1=70.27%
(122) Hoeffding Tree White Box NO Sensitivity = 0.775 NO

Accuracy= 91.4%
(123) CMVRO Black Box NO Sensitivity= 94.8% NO
Specificity=90.1%

Accuracy= 98.51%
Sensitivity= 98.64%
(124) LS-SVM Black Box NO Specificity= 98.38% NO
AUC = 98.61%
F-score= 98.47%

(125) EAGA-MLP Black Box NO Accuracy=97.76% NO

Sensitivity= 94.63%
Specificity= 73.34%

B (126) DNN Black Box NO Accuracy= 92.58% NO

) F-score= 94.22%

o

g Sensitivity=86.82%

N 127 Random Forest Black Box NO Accuracy = 89.24% NO

< F1=88.02 %

o

; (128) ANN Black Box NO Accuracy =84.57 NO

(%}

g (129) Random Forest Black Box NO Accuracy = 97% NO

ke

= (130) Fuzzy system Black Box YES Accuracy = 94% YES

IS

2 (131) ANN Black Box NO Accuracy =9.52% NO

3

g Accuracy=96.3%

S (132) MLP Black Box NO Sensitivity=94.8% NO

2

a (133) Decision Tree Black Box YES Accuracy=98.87% NO
(134) XGBoost Black Box NO AUC=87% NO
(135) Random Forest Black Box NO AUC=76.70% NO
(136) Decision Tree Black Box NO Accuracy=96.1% NO

& AUC=84.18

o . Sensitivity=31.17

S (137) deep learning Black Box NO Specificity=96.85 NO

o Accuracy=84.28

>

k= (138) HyperTab-LIME Black Box NO AUC=84.29% NO

I

§ (139) Random Forest Black Box NO Accuracy=94% NO

—

S

‘,‘! (140) Expectation-Maximization White Box YES Accuracy=97% NO

O
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Black Box

Black Box

Black Box

Black Box

Black Box

Black Box

Black Box

Black Box

Black Box

Black Box

Black Box

Black Box

White Box
Black Box
Black Box
White Box

Black Box

Black Box

Black Box

Black Box
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NO

NO
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NO

NO

NO

NO
NO
NO
NO

NO

NO

NO

NO

Sensitivity= 66.23%
Specificity=69.76%

Accuracy=90.76%
Sensitivity= 85.82%

Accuracy=95%
Sensitivity= 66%
AUC=98%
Accuracy= 90.63%
Sensitivity = 93.18%
Specificity=85.00%

Accuracy=89.63%
Sensitivity= 86.87%
Specificity= 89.8%

Accuracy=95.81%
Accuracy=98.46%

Accuracy =100/

Accuracy=96.84%
Sensitivity= 93%

Accuracy=95.5%
Sensitivity=96.5%
Specificity=93.5%
Accuracy= 88%
Sensitivity = 89%
AUC=89%
Accuracy = 94.1%
sensitivity = 90%
specificity=95.5%
Accuracy = 94.1%
sensitivity = 96.2%
specificity = 94.9%
F1 score =95.2%
Accuracy = 79%

Accuracy=79%
sensitivity = 50%

sensitivity =98%
Accuracy=71%
Accuracy=93.51%
accuracy=81%
Accuracy=92.8%

accuracy = 86.31%
AUC =82.70

Accuracy=99.24%
Accuracy =83.8%

sensitivity =96.1%
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specificity =79.9%
f-measure =88.5
AUC =85.9

Accuracy= 86.7%
(189) ANN Black Box NO Sensitivity= 80% NO
Specificity= 93.3%

(190) Fuzzy system Black Box NO Accuracy=97.33% NO
Specificity= 95%

(191) MLP Black Box NO sensitivity =97% NO
accuracy=97%

(192) DNN Black Box YES AUC=84% NO
(193) ABC-DNN Black Box NO Accuracy=94.74% NO
(194) J48 White Box NO Accuracy=991.38% NO
(195) SVM Black Box NO Accuracy =100% NO
(196) DeepNetX2 Black Box NO Accuracy=97.87% NO
(197) RCE-IFE Black Box NO AUC=72% NO

Accuracy: 94.7%
(198) Random Forest Black Box NO Sensitivity: 92% NO
Specificity: 95%

Accuracy=75.32%
(199) Logistic Regression White Box NO Sensitivity= 86% NO
Specificity= 55.56%

(200) Decision Tree Black Box NO Accuracy=75.91% YES

Accuracy= 98.86%

Sensitivity =98.86% YES

(201) Random Forest Black Box NO

Accuracy= 98.14%
(202) ANFIS Black Box NO Sensitivity =96.97% NO
Specificity=95.58%

(203) RBF Black Box NO Accuracy=79% NO
(204) AdaBoost Black Box NO Accuracy=80.72% NO
(205) SVM Black Box yes Accuracy=88% NO

Accuracy=78.83%
Sensitivity =82.99%
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(206) GBDT Black Box NO F1-Measure= 79.01% NO
AUC= 86.72%
(207) PNN Black Box NO Accuracy=92.5% NO

Accuracy=80%
(208) SVM Black Box NO Sensitivity =75% NO
Specificity= 81%

- Accuracy=99.4%
(209) Support Vector Classifier Black Box NO Sensitivity =100% NO

(210) K-Means Black Box NO Accuracy=95.42% NO

Accuracy=82.29%
(211) LapSVM Black Box NO Sensitivity= 86.40% NO
Specificity= 86.40%

(212) SqueezeNet Black Box NO Accuracy=87.35% NO
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(213) ANN Black Box
(214) XGBoost Black Box
(215) Ensemble Learning Black Box
(216) CNN Black Box
Genetic Algorithm
(217) XGBoost Black Box
(218) Random Forest Black Box
(219) AHDHS-Stacking Black Box
(220) CNN Black Box
XGBoost
(221) Random Forest LightGBM Black Box
(222) FNN Black Box
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Sensitivity=89.29%
Specificity=85.40%
AUC=93.4%

Accuracy= 82.41]
Sensitivity= 37.81]
NO Specificity=90.2[] NO
AUC= 79.49%

Accuracy=93.75%
Sensitivity=91.79%

NO s NO
Specificity-94.8%
AUC=97.81%
Sensitivity =52.53
NO F1= 7359 NO
Accuracy= 92
Sensitivity= 95
NO Specificity= 95 NO
F1-score= 0.95
AUC=99.5%
Accuracy=97.28%
NO F1-Score: 0.97% NO
NO Accuracy=85.9% NO

Accuracy= 93.09%
NO Sensitivity =91.60% NO
F-Measure: 92.25%

NO Accuracy=94.12% NO
NO AUC=84.7% NO
NO Accuracy= 87.69 NO

Sensitivity= 44.88
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