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Abstract 
 
Background: Diabetes is a serious global health problem, and effective methods for its prediction and management are 
essential. Conventional diagnostic approaches typically rely on tests such as oral glucose tolerance test (OGTT), fasting 
plasma glucose (FPG) and glycated hemoglobin (HbA1c). Machine learning has the potential to enhance diagnostic 
accuracy; however, its performance and alignment with clinical guidelines require thorough evaluation. 
Methods: This narrative review examines the effectiveness of machine learning in the early diagnosis of diabetes. 
Articles were selected based on predefined criteria and analyzed in terms of algorithm classification, output measures, 
involvement of clinical experts, and interpretability. Evaluation metrics such as accuracy, area under the curve (AUC), 
specificity and sensitivity were used to assess algorithmic performance. Relevant studies comparing prediabetes 
diagnosis using artificial intelligence and conventional methods were reviewed, and clinical guidelines from both 
domains were extracted and compared. 
Results: Analysis of 41 articles showed that ANN, LR, and DNN were the most frequently used algorithms. Only 2% 
of the studies incorporated clinical rules and physician involvement, and 12% demonstrated model interpretability. While 
conventional methods rely on HbA1c and FPG tests, no clinical guidelines currently exist for AI-based diagnosis. 
Machine learning algorithms outperformed traditional methods, showing 29% higher sensitivity and 23% higher 
specificity. 
Conclusion: Although artificial intelligence demonstrates superior performance in prediabetes diagnosis, limitations 
such as lack of interpretability and the absence of standardized clinical guidelines hinder its current clinical application. 
Addressing these challenges could enable AI to become a more efficient and reliable diagnostic tool. 
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 چکیده 
 

  یی ها ش ی مرسوم شامل آزما   ی ص ی تشخ   ی ها دارند. روش   ی اد ی ز   ت ی آن اهم   ت ی ر ی و مد   ی ن ی ب ش ی پ   ی ها است و روش   ی جهان   ی مشکل جد   ک ی   ابت ی د   مقدمه: 

و عملکرد آن در    ی ن ی بال   ی ها ن ی دل ی گا   ی به بررس   از ی را بهبود بخشد، اما ن   ی ص ی دقت تشخ   تواند ی م   ن ی ماش   ی ر ی ادگ ی است.    HbA1cو    OGTT  ،FPG  مانند 
 . مرسوم وجود دارد   ی ها با روش   سه ی مقا 

مشخص انتخاب و از    ی ارها ی . مقالت براساس مع کند ی م   ی را بررس   ابت ی زودهنگام د   ص ی در تشخ   ی ن ی ماش   ی ر ی ادگ ی   ی اثربخش   ی ت ی مرور روا   ن ی ا   ها: روش 

  ت ی و حساس   ی ژگ ی ، و AUCمانند دقت،    یی ارها ی شدند. مع   ل ی تحل   ت ی و شفاف   ی ن ی مشارکت متخصصان بال   ، ی خروج   ی ها شاخص   ها، تم ی الگور   ی بند نظر طبقه 
شدند    ی مرسوم بررس   ی ها و روش   ی باهوش مصنوع   ابت ی د   ش ی پ   ص ی تشخ   سه ی مقا   ی استفاده شدند. مقالت مرتبط برا   ها تم ی عملکرد الگور   ی اب ی رز ا   ی برا 

 شدند.   سه ی هر دو حوزه استخراج و مقا   ی ها ن ی دل ی و گا 

و حضور    ی ن ی بال   ن ی درصد مقالت از قوان   2اند. تنها  استفاده را داشته   ن ی شتر ی ب   DNNو    ANN  ،LR  ی ها تم ی مقاله نشان داد که الگور   41  ل ی تحل  ها: یافته 

  چ ی ا ه امّ  شود، ی استفاده م   FPGو    HbA1c  ی ها مرسوم از تست   ی ها اند. در روش داشته   ر ی تفس   ت ی درصد از مقالت قابل   12پزشکان استفاده کرده و  
 درصد بهتر عمل کردند.   23و    29  ب ی ترت به   ی ژگ ی و و   ت ی در حساس   ی هوش مصنوع   ی ها تم ی منتشر نشده است. الگور   ی مصنوع هوش   ی برا   ی ن ی بال   ن ی دل ی ا گ 

  ی هان ی دل ی و نبود گا   ی ر ی پذ ی اب ی مانند عدم ارز   ی مشکلات   ل ی دل دارد، اما به   ی عملکرد بهتر   ابت ی د ش ی پ   ص ی در تشخ   ی اگرچه هوش مصنوع   گیری: نتیجه 

 کار رود. کارآمدتر به   ی عنوان روش به   تواند ی م   ی هوش مصنوع   ها، ت ی محدود   ن ی . با رفع ا ست ی آماده ن   ن ی استفاده در بال   ی هنوز برا   ، ی ن ی بال 

 

 ی ن ی بال   ی ها ن ی دل ی گا مصنوعی، دیابت، یادگیری ماشین،    هوش   : کلیدی   واژگان 
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 ... مرسوم  یهابا روش یعملکرد هوش مصنوع ۀسیمقا همکاران   و زروج حسینی

 

 1404سال  ، 5 ، شمارۀ 25دورۀ  مجله ديابت و متابوليسم ايران

 مقدمه 

های بهداشتی در جهان محسوب  ترین چالش دیابت یکی از بزرگ     
به می  و  جهانی  شود  سلامت  دیدگاه  از  مزمن،  بیماری  یک  عنوان 

میلیون نفر را در    420ای دارد. این بیماری تاکنون بیش از  اهمیت ویژه 
شود که این  بینی می سراسر جهان تحت تأثیر قرار داده است و پیش 

ثانیه،    10در هر    . [ 1]   میلیون نفر افزایش یابد   700به    2045رقم تا سال  
میلیون مورد    10شوند که معادل نزدیک به دو نفر به دیابت مبتلا می 

دلیل  یک نفر به   ثانیه،   همچنین، و در هر هفت   [ 2] جدید در سال است  
در    . [ 3] دهد  عوارض ناشی از این بیماری جان خود را از دست می 

میلیون مرگ به دیابت یا عوارض مرتبط با آن    6/ 7، تقریباً  2021سال  
موقع دیابت بسیار مهم و    تشخیص به     . [ 4]   نسبت داده شده است 
تواند از ایجاد عوارض جانبی جدی ناشی از  حیاتی است، زیرا می 

بیماری  مانند  نارسایی کلیوی، مشکلات    - های قلبی دیابت  عروقی، 
اعصابی و پای دیابتی در افراد جلوگیری کرده و به افراد کمک کند تا  
بهبود یابند. همچنین تحقیقات نشان داده است که افراد مبتلا به دیابت  

کنند  شوند، درمان مناسب را فوراً دریافت می که تازه تشخیص داده می 
می  بیماری  این  از  ناشی  کمتری  مشکلات  دچار  این  و  که  شوند 

قابل  تأثیر  مرگ ملاحظه موضوع  کاهش  در  ناخوشی ای  و  های  ومیر 
 ناشی از دیابت دارد.  

حوز روش    در  ماشینی  یادگیری  به   ۀ های  از    عنوان پزشکی،  یکی 
ها  بینی بیماری ابزارهای مهم و کارآمد، به پزشکان در تشخیص و پیش 

ها و  دلیل توانایی در کار با داده به   فناوری کنند. این کمک بسیاری می 
ها و کمک  تر بیماری تواند در تشخیص سریع اطلاعات بسیار زیاد، می 

تصمیم  باشد. گیری به  مؤثر  پزشکان  این   های  دیابت،  بیماران  در 
های بیماری،  ها اهمیت زیادی دارند. توسط تحلیل دقیق داده روش 

تر کمک کرده و همچنین در  تر و سریع توانند به تشخیص دقیق می 
گیرند. این  استفاده قرار می   بینی احتمال ابتلا به دیابت نیز مورد پیش 

کند تا افرادی که در خطر ابتلا به دیابت  موارد به پزشکان کمک می 
دلیل حجم بالی  زودتر تشخیص دهند. علاوه بر این، به   هستند را 

تواند در  های پزشکی که نیاز به تحلیل دارند، یادگیری ماشینی می داده 
شدت مؤثر  یافته برای مدیریت دیابت نیز به   رویکردهای بهبود   ۀ توسع 
 باشد. 

پیش الگوریتم    الگوریتم های  دیابت  داده بینی  است،  های  کاوی 
های مختلف  کاوی یک روش تحلیلی است که در آن از تکنیک داده 

استخراج داده برای کشف الگوها، ارتباطات و اطلاعات مفید استفاده  
اکتشاف الگوها و روابط پنهان در  می  شود. این روش عموماً برای 

 
1 Oral Glucose Tolerance Test 
2 Fasting Plasma Glucose 

استفاده می داده  بزرگ  به های  که  داده شود  در  معمول  که  طور  هایی 
شوند،  ای از اطلاعات را شامل می حجم بال، انواع مختلف و پیچیده 

هستند  پیش  موجود  نوع  به  توجه  انجام  با  الگوریتم  یک  که  بینی 
می می  الگوریتم دهد،  کرد:  توان  تقسیم  اصلی  دسته  دو  به  را  ها 

های  الگوریتم .  نگر های گذشته و الگوریتم  بینی کننده های پیش الگوریتم 
کننده براساس داده پیش  به پیش بینی  بینی یک متغیر یا  های موجود 

می  آینده  در  الگوریتم رویداد  این  مدل پردازند.  از  معمولً  سازی  ها 
های تکنیکال  های عصبی و الگوریتم ریاضی، یادگیری ماشین، شبکه 

می مدل  استفاده  پیش   ود ش سازی  زمانی مانند  سری  مدل بینی  های  ، 
و...  پیش  بازار  در  تقاضا  گذشته الگوریتم .  [ 5] بینی  به   نگر های 

داده و تجزیه  و  تحلیل  روابط  الگوها،  استخراج  برای  موجود  های 
داده ویژگی  تفسیر  و  توصیف  برای  و  پرداخته  مهم  استفاده  های  ها 

تکنیک  شوند. می  از  داده معمولً  مختلف  و  های  آماری  کاوی، 
داده  تحلیل  برای  می محاسباتی  استفاده  های  الگوریتم   مانند: .  شود ها 

.  بندی، تحلیل عاملی، نمودارهای مختلف و آمارهای توصیفی خوشه 
  ۀ دست » سازی به دو دسته  ها مسائل بهینه بندی دیگری الگوریتم در دسته 

یا    « سیاه   ۀ دست » های  شوند، الگوریتم تقسیم می «  سیاه   ۀ دست » و    « سفید 
 «Black Box »   ها به این عنوان  الگوریتم . این  هستند دوم    ۀ متعلق به دست

شوند چون به شکل مستقیم با مدل مسئله سر و کار ندارند  شناخته می 
کنند و  های مسئله عمل می و فقط براساس تابع هدف و محدودیت 

گونه اطلاعی از عملکرد و درون آن در اختیار کاربر نیست و  هیچ 
  Whiteیا »   های سفید های جعبه الگوریتم   عملکرد آن غیرشفاف است. 

Box »   هایی هستند که ساختار و روند کاری داخلی آنها  ، الگوریتم
ها عموماً برای  طور کامل قابل مشاهده و درک است. این الگوریتم به 

روند. توانایی درک و  کار می اهداف آموزشی، آزمایشی و تحقیقی به 
ویژگی  از  آنها،  کاری  روند  کامل  از  تفسیر  دسته  این  اصلی  های 

 . [ 6،   7] هاست  الگوریتم 

پیش دیابت حالتی از اختلال در تنظیم گلوکز است که مقدم بر دیابت    
شود  که با سطح گلوکز خون بالتر از حد طبیعی مشخص می  است 

این بیماری از طریق    [ 8] عروقی همراه است    - و با افزایش خطر قلبی 
سطوح آزمایش  مانند  خونی  گلوکز    های  تحمل  آزمون 
ناشتا (OGTT)1ی خوراک  خون  قند   ،2(FPG)  هموگلوبین   و

می   (HbA1c)3گلیکوزیله  داده  هموگلوبین    . [ 9]   شود تشخیص 
گلیکوزیله یک نشانگر زیستی شناخته شده برای تشخیص و نظارت  

پیش دیابت در جمعیت ها و مطالعات مختلف است که  و  بر دیابت  
هفته    8تا    6  ۀ میانگین سطح گلوکز خون در یک دور ۀ  منعکس کنند 

یک ابزار تشخیصی است که    گلوکز پلاسما ناشتا   . [ 10،   11] است  

3 Glycated Hemoglobin 
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 همکاران   و زروج حسینی

ناشتا، معمولً یک   ۀ برای ارزیابی سطح گلوکز خون پس از یک دور 
این    . [ 12]   شود دیابت و دیابت استفاده می شبه، برای شناسایی پیش 

می روش  کمک  افرادی  شناسایی  به  که ممکن  های تشخیصی  کنند 
خیر انداختن یا جلوگیری  أ است با کمک اقدامات پیشگیرانه باعث به ت 

 . [ 8،   13]   از شروع دیابت بشوند 

های اخیر در  به بررسی پیشرفت  [ 14]   2023ای در سال  در مطالعه   
  ۀ در مدیریت دیابت و بحث دربار     (   AI) 1هوش مصنوعی استفاده از  

های استفاده از هوش مصنوعی در عملیات بالینی  ها و چالش فرصت 
ن بود که هوش مصنوعی در مدیریت  آ پرداخته شده است نتایج مبین  
، یک فرصت  ها ها و چالش ها، فرصت دیابت، با تمرکز بر پیشرفت 

بزرگ برای بهبود مدیریت بیماری دیابت است و بر شاخص، دقیق  
و شخصی شدن مراقبت از دیابت از طریق یادگیری ماشین و هوش  

همچنین از پزشک جهت تحلیل برخی از    شود. مصنوعی تأکید می 
ها و ارسال آن به سرور مرکزی  ها، لیبل کردن و نظارت بر داده داده 

   هوش مصنوعی نیز استفاده شده است. 
های  با عنوان بررسی جامع تکنیک   [ 15]   2021ای در سال  مطالعه    

این   از  که هدف  انجام شد  دیابت  برای تشخیص  ماشین  یادگیری 
تکنیک   مطالعه  از  استفاده  با  دیابت  تشخیص  دقت  های  ارزیابی 

  های ها و روش های بین عملکرد این تکنیک یادگیری ماشین، مقایسه 
ثیرگذار در تشخیص دیابت،  أ سنتی تشخیص دیابت، شناسایی عوامل ت 

بهبود روش  برای  پیشنهادات  از  و  استفاده  با  دیابت  تشخیص  های 
رسد که تشخیص دقیق  این مقاله به این نتیجه می  یادگیری ماشین بود. 

های  های یادگیری عمیق، از شبکه دیابت بسیار حیاتی است و مدل 
بیشتری    ۀ های عصبی بازگشتی، توانایی بازد عصبی مصنوعی تا شبکه 

 بینی بیماری با دقت بیشتر دارند.  در پیش 

با هدف بررسی و تحلیل استفاده از    2020ای که در سال  مطالعه    
دیابت  روش  تحقیقات  در  و هوش مصنوعی  ماشین  یادگیری  های 

انجام شد که الگوریتم  استفاده در مقالت شامل:  شیرین  های مورد 
کانولوشن    ۀ شبک  لجستیک    ( CNN) 2عصبی  رگرسیون   ،3 (LR )    ،

لیه   چند  تصمیم    ( MLP) 4پرسپترون  درخت   ،5 (DT )    سیستم  ،
  ( RF) 7، و جنگل تصادفی    ( ANFIS)   6استنتاج عصبی فازی تطبیقی  

الگوریتم  که  دقت،    ها بودند  مانند  عملکردی  معیارهای  براساس 
، دقت،  Score-F،    (  AUC) 8سطح زیر منحنی    حساسیت، ویژگی، 

  10بینی منفی  ( و ارزش پیش PPV) 9بینی مثبت  امتیاز کاپا، ارزش پیش 
 (NPV  مقایسه شدند. نتایج در مطالعات مختلف متفاوت بود و برخی )
 

1 Artificial Intelligence  
2 Convolutional Neural Network 
3 Logistic Regression 
4 Multilayer Perceptron 
5 Decision Tree 
6 Adaptive Neuro-Fuzzy Inference System 

و سایر معیارهای عملکرد دست یافتند. اما    AUCاز آنها به دقت بال،  
ن بود که، الگوریتم درخت تصمیم نتایج  آ   ۀ طور کلی نتایج بیان کنند به 

درصد در تشخیص دیابت نوع    90/ 04بهتری را نشان داد و به دقت 
 . [ 16]   دست یافت   دو 
استفاده    ۀ هدف از این مطالعه، مروری بر مطالعاتی است که در زمین    

از یادگیری ماشین در تشخصی دیابت است تا بتوان میزان اثربخشی  
یادگیری ماشین را در تشخیص دیابت بررسی کرد؛ لذا با بررسی متون  

راستا به میزان و چگونگی استفاده و کاربرد این روش، میزان کمک  هم 
کارگیری  در تسریع و دقت تشخیص بیماری، میزان دقت و سرعت به 

از   جلوگیری  بیمار،  وضعیت  بهبود  چگونگی  نهایت  در  درمان 
در جهت   درمانگر  به  بیمارستان کمک  از  بیمار  ترخیص  عوارض، 
بررسی   همچنین  شد.  پرداخته  بیماری  تشخیص  دقت  و  سرعت 

  ی راهنمای بالین صورت  های هوش مصنوعی به شود که آیا روش می 
می  قرار  مورداستفاده  دیابت  پیش  تشخیص  عملکرد  در  و  گیرد 

های غیر هوش مصنوعی در  های هوش مصنوعی با گایدلین روش 
گیرد و از سویی  تحلیل قرار می   و   زیه ج تشخیص پیش دیابت مورد ت 
شود و با  ها در این زمینه مشخص می دیگر وضعیت کلی پژوهش 

که امکان بررسی بیشتر را دارد امکان کار بیشتر در این    معرفی مواردی 
 گردد. حوزه برای سایر پژوهشگران فراهم می 

 

 ها روش 
  2024تا    2006زمانی    ۀ حاضر یک مرور سیستماتیک در باز   ۀ مطالع   

است که با هدف بررسی میزان اثربخشی یادگیری ماشین در تشخیص  
کارایی و اثر بخشی این  ۀ  بینی زودهنگام بیماری دیابت و مقایس و پیش 
با روش روش  مقایسه  گایدلین ها در  های  های سنتی ذکر شده در 

. این مطالعه در دو مرحله انجام شده است:  انجام شده است پزشکی  
های  اول، مقالت براساس معیارهای اولیه انتخاب و از پایگاه   ۀ در مرحل 

دوم، شاخصهای کلیدی از  ۀ  در مرحل   ، استنادی استخراج شدند   ۀ داد 
در نگارش این    . مقالت منتخب استخراج و مورد بررسی قرار گرفتند 

 ,scopus  های اطلاعاتی مطالعه مروری از مقالت نمایه شده در پایگاه 

pubmed, web of science   استفاده    های مورد استفاده شد. عبارت
کلمات    و از ج مده است. در این جست آ   1جهت جستجو در جدول  

استفاده شده است.    ,diagnosis ،  diabetes  Machine  learningکلیدی  
حوزه، مفاهیم سه  با    جستجو برای بازیابی مقالت مرتبط   راهبرد در  

7 Random Forest 
8 Area Under the Curve 
9 Positive Predictive Value 
10 Negative Predictive Value 
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 . اند حوزه با استفاده ازعملگرهای بولین با همدیگر ترکیب شده 

 

 متن راهبرد جستجو در سه پایگاه داده - 1جدول 
Date of 
search 

 داده پایگاه  جستجو عبارت 

04/10/1403 
(((Diagnosis [MeSH Terms]) AND (Diabetes Mellitus [MeSH Terms])) AND (Artificial Intelligence 
[MeSH Terms])) AND (Machine Learning [MeSH Terms]) 
 

Pumped 

04/10/1403 

TITLE-ABS (( "Diagnoses" OR "Diagnose" OR "Diagnoses and Examinations" OR "Examinations and 
Diagnoses" OR "Diagnoses and Examination" OR "Examination and Diagnoses" OR "Postmortem 
Diagnosis" OR "Diagnoses, Postmortem" OR "Diagnosis, Postmortem" OR "Postmortem Diagnoses" 
OR "Antemortem Diagnosis" OR "Antemortem Diagnoses" OR "Diagnoses, Antemortem" OR 
"Diagnosis, Antemortem" OR "diagnosis" OR "diagnostic" OR "diagnosing" OR "diagnosed" )AND ( 
"Adult-Onset Diabetes Mellitus" OR "Ketosis-Resistant Diabetes Mellitus" OR "Diabetes Mellitus, Non 
Insulin Dependent" OR "Diabetes Mellitus, Non-Insulin-Dependent" OR "Non-Insulin-Dependent 
Diabetes Mellitus" OR "Diabetes" OR "Diabetes Mellitus, Stable" OR "Stable Diabetes Mellitus" OR 
"Diabetes Mellitus, Type II" OR "NIDDM" OR "Diabetes Mellitus, Noninsulin Dependent" OR 
"Diabetes Mellitus, Maturity-Onset" OR "Diabetes Mellitus, Maturity Onset" OR "Maturity-Onset 
Diabetes Mellitus" OR "Maturity Onset Diabetes Mellitus" OR "MODY" OR "Diabetes Mellitus, Slow-
Onset" OR "Type 2 Diabetes Mellitus" OR "Noninsulin-Dependent Diabetes Mellitus" OR "Noninsulin 
Dependent Diabetes Mellitus" OR "Maturity-Onset " OR "Diabetes, Maturity-Onset" OR "Maturity 
Onset Diabetes" OR "Type 2 Diabetes" OR "Diabetes, Type 2" OR "Diabetes Mellitus, Noninsulin-
Dependent" ) AND ("decision tree" OR "neural netwORk" OR "SuppORt vectOR machine" OR 
"Artificial intelligence" OR "Fuzzy" OR "machine learning" OR "Data mining" OR "genetic algorithm" 
OR metaheuristic OR "Meta heuristic" OR "meta-heuristic" OR "Cuckoo search" OR "Bees algorithm" 
OR "Artificial bee colony algorithm" OR "evolutionary algorithm" OR "Ant colony optimization" OR 
"Particle swarm optimization" OR "Firefly algorithm" OR "Memetic algorithm")) 
 

Scopus 

04/10/1403 

Ti=( "Diagnoses" OR "Diagnose" OR "Diagnoses and Examinations" OR "Examinations and 
Diagnoses" OR "Diagnoses and Examination" OR "Examination and Diagnoses" OR "Postmortem 
Diagnosis" OR "Diagnoses, Postmortem" OR "Diagnosis, Postmortem" OR "Postmortem Diagnoses" 
OR "Antemortem Diagnosis" OR "Antemortem Diagnoses" OR "Diagnoses, Antemortem" OR 
"Diagnosis, Antemortem" OR "diagnosis" OR "diagnostic" OR "diagnosing" OR "diagnosed") And Ti 
=( "Adult-Onset Diabetes Mellitus" OR "Ketosis-Resistant Diabetes Mellitus" OR "Diabetes Mellitus, 
Non  Insulin Dependent" OR "Diabetes Mellitus, Non-Insulin-Dependent" OR "Non-Insulin-Dependent 
Diabetes Mellitus" OR "Diabetes" OR "Diabetes Mellitus, Stable" OR "Stable Diabetes Mellitus" OR 
"Diabetes Mellitus, Type II" OR "NIDDM" OR "Diabetes Mellitus, Noninsulin Dependent" OR 
"Diabetes Mellitus, Maturity-Onset" OR "Diabetes Mellitus, Maturity Onset" OR "Maturity-Onset 
Diabetes Mellitus" OR "Maturity Onset Diabetes Mellitus" OR "MODY" OR "Diabetes Mellitus, Slow-
Onset" OR "Type 2 Diabetes Mellitus" OR "Noninsulin-Dependent Diabetes Mellitus" OR "Noninsulin 
Dependent Diabetes Mellitus" OR "Maturity-Onset " OR "Diabetes, Maturity-Onset" OR "Maturity 
Onset Diabetes" OR "Type 2 Diabetes" OR "Diabetes, Type 2" OR "Diabetes Mellitus, Noninsulin-
Dependent") And Ti =(" decision tree" OR "neural network" OR "Support vector machine" OR 
"Artificial intelligence" OR "Fuzzy" OR "machine learning" OR "Data mining" OR "genetic algorithm" 
OR metaheuristic OR "Meta heuristic" OR "meta-heuristic" OR "Cuckoo search" OR "Bees algorithm" 
OR "Artificial bee colony algorithm" OR "evolutionary algorithm" OR "Ant colony optimization" OR 
"Particle swarm optimization" OR "Firefly algorithm" OR "Memetic algorithm")  

Web of 
Science 

 
استخراج شدند    های استنادی تمام مقالتی که بعد از جستجو از پایگاه   

مورد بررسی قرار گرفتند و تعدادی از آنها براساس معیارهای ورود  
 مطالعه انتخاب شدند.  

از بررسی     پا   تمام مقالت بعد  از  استنادی یگاه استخراج شده  ،  های 
. معیارهای  ی ورود مطابقت داشتند انتخاب شدند ارها ی مع مقالتی که با  

بینی  های پیش بودند که به بررسی مدل ورود به مطالعه شامل مقالتی  
های هوش مصنوعی  یا تشخیص بیماری دیابت با استفاده از روش 

  های شناخته شناسی معتبر و مبتنی بر الگوریتم اند، دارای روش پرداخته 
منتشر    2024تا    2006زمانی از    ۀ اند، و در باز هوش مصنوعی بوده   ۀ شد 

اصل از ارزیابی  ح دارای گزارش نتایج  که    اند. همچنین مقالتی شده 
باشند   منتشر شده و  مدل  انگلیسی  زبان  انتخاب  باشند   به  در  شد ،   .

مقابل، مقالتی که فاقد ارتباط مستقیم با موضوع تحقیق بودند، دارای  

های غیراستاندارد و غیر  های غیر معتبر یا ناقص بودند، یا روش داده 
به   شناخته  خارج شدند. همچنین    کار برده بودند، از مطالعه شده را 

به  مقالت کنفرانسی، مقالتی که متن کامل آنها در دسترس نبود و یا  
 های غیر از انگلیسی منتشر شده از مطالعه حذف شدند. زبان 

شده براساس معیار ورود و خروج مورد بررسی    استخراج مقالت    
استفاده،   مورد  الگوریتم  نوع  شامل  تحلیل  ملاک  گرفتند  قرار 
بود.   پژوهش  در  بالینی  متخصص  حضور  و  خروجی  شاخصهای 

ها، ابتدا ساختار و شاخصهای خروجی  جهت بررسی نوع الگوریتم 
)نمودار   شدند  ارزیابی  مقالت(.   د راهبر   1آنها  جهت    جستجوی 

الگور   ی بررس  مصنوع   ی ها تم ی عملکرد  شاخص   ی هوش    ی ها از 
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شامل   و AUC،  1دقت مختلف  حساس   2ی ژگ ی ،  شده  ا   3ت ی و  ستفاده 
4ی  ها، چهار مقدار اصل شاخص   ن ی ا   ۀ محاسب   ی برا   ن ی است. همچن 

TP  ،

5FP  ،6
TN  7وFN   پا به گرفته شده   ه ی عنوان    3اند )جدول  در نظر 

 (. ی اب ی ارز   ی ها   محاسبه شاخص   ی ها فرمول 

 

 جستجوی مقالات  دراهبر -1نمودار 

 

 

 

ی ارزیابی ها شاخصی محاسبۀ هافرمول -3جدول   

 فرمول محاسبه   شاخص 

Sensitivity 
TP

TP+ FN

 

Specificity 
TN

FP+ TN

 

Accuracy 
TP+TN

TP+ FN+ FP+TN

 

TP: True positive, FN: False negative, TN: True negative,  
FP: False positive 

آنجا  الگوریتم  از  عملکرد  تأیید  پزشک جهت  های  که حضور 
 

1 Accuracy 
2 Specificity 
3 Sensitivity 
4 True Positive 

پژوهشگران حضور    است دیابت مورد توجه  های پیشتشحیص

5 False Positive 
6 True Negative 
7 False Negative 
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یا عدم حضور پزشکان در مطالعه را نیز مورد بررسی قرار دادند  
الگوریتم[ 14]  این  خروجی  آیا  که  شد  بررسی  همچنین  های . 

 دارند یا خیر؟  ارزیابی بالینی
های  ارزیابی مقالت پزشکی یک فرآیند حیاتی است که از روش 
شود که اعتبار سنجی و کیفیت سنجی مطالب تلفی انجام می خم

ها دارای مزایا  کند که هر یک از روشعلمی مقاله را مشخص می
روش دلفی، فکوس   توانها میو معایبی هستند از جمله روش

ها و نظرات از دیدگاه  [17]   که در روش دلفی  گروپ اشاره نمود 
دقیق    جشود که نتایتخصصی یک گروه از متخصصان استفاده می

روپ  گ و قابل اعتماد از مقالت به دست بیاید و در روش فکوس  
با برگزاری جلسات گروهی و تبادل نظرات بین اعضا، به    [ 18] 

تری از مقالت داشته تر و کاملدهد تا ارزیابی عمیقما امکان می
های متعدد بهره ببریم. لذا در این مقالت وجود  باشیم و از دیدگاه

 ارزیابی بالینی قوانین بالینی نیز در نظر گرفته شده است. 
کمک    با  دیابت  پیش  تشخیص  روش  بررسی  ادامه جهت  در 

ن مقالت مختلف بررسی و  آهوش مصنوعی و روش مرسوم  
های راج و گایدلینخهای مورد نیاز جهت تشحیص استشاخص

دیابت در دو زمینه استفاده از هوش مصنوعی و تشخیص پیش 
سپس   گرفت.  قرار  بررسی  مورد  مرسوم،  های  شاخصروش 

غیر هوش    هایهای گایدلینشاخصارزیابی هوش مصنوعی با  
مصنوعی مقایسه و روشی که بهترین عملکرد را داشت استخراج  

سایت   در  بررسی  از  پس  که  تست   up to dateگردید  برای 
HbA1c    برای تست  [ 9،  19] دو ،FPG    [9،  20]   گایدلین  2نیز  
 خیص با کمک هوش مصنوعی گایدلینی یافت نشد.  شو برای ت

بررس  در   ,Pumpedه  داد   گاهیپا  3  ه یاول  یپژوهشگران 

Scopus538    وWeb of Science  و پس از حذف    یابیمقاله باز
ارز  یموارد تکرار براساس  نامرتبط  متن    ده،یعنوان، چک  یابیو 

نها کامل، باق  223  تیدر  نما  یمقاله  که   نیا   یفیتوص  شیماند 
 . آمده است  4مقالت در جدول 

به    ییهاشاخصشده را براساس    یابیمقاله باز  223  پژوهشگران 
الگور استفاده،    تمینام  حضور  یابیارز  شاخصمورد  عدم   ای، 

قرار داده   لیتحلوهیمورد تجز  ین یبال  نیحضور پزشک، وجود قوان
در ا  افتندیو  در  الگور  نیکه  هوش    یهاتمیمقالت  مختلف 

 . (وست یاست )جدول در پ  تهمورد استفاده قرار گرف یمصنوع
قرار    یمقاله مورد بررس  223در    یهوش مصنوع  یهاتمیالگور

و    RF   ،ANNتمیالگور   ب یترتآن بود که به  ن یمب  ج یگرفت و نتا
SVM  اند  مقالت داشته  نیتعداد تکرار استفاده را در ب  نیشتریب

 ها( تمیالگور  عیتوز 1 شکل)

 

 
 هاتوزیع الگوریتم -1شکل 

 
 
بررس  شاخص  4تر  قیبهتر و دق   یابی زرمطالعات استخراج جهت ا  یپس از بررس  گرفته  یمورد  بهقرار  که  بال  ل یدلاند   یتعداد 
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هر   از  بالتر  مقدار  دو  در    شاخصمقالت  سال  حسب  بر 
 مطرح شده است. 3و  2 هایشکل

 

 

 
 

 یابیارز ی هاشاخص یپراگندگ  -2شکل 
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 همکاران   و زروج حسینی

 
 

 یابیارز ی هاشاخص یپراگندگ  -3شکل 

 
شد که،    ی مقاله بررس   223در    ی هوش مصنوع   ی ها تم ی عملکرد الگور  

،   AUCشاخص مقاله   49، ( Accuracy)  دقت   شاخص مقاله  188در  
  ت ی حساس   شاخص مقاله    93،  ( Specificityی ) ژگ ی و   شاخص مقاله    56

 (Sensitivity مورد ارز ) ها  شاخص   ن ی ا   رات یی تغ   ۀ قرار گرفت که باز   ی اب ی
)حداقل،    ی مار آ   ی ها ار ی مع   6شده است و   ان ی ب   3و   2های  در شکل 
( محاسبه و  رات یی تع   ۀ و دامن   ار ی انحراف مع   ، انس ی ، وار ن ی انگ ی حداکثر، م 

 گزارش شده است.   5در جدول  

  ی ن ی قانون بال   ۀ مطالع   10مطالعه،    223  ن ی که از ب   افتند ی پژوهشگران در 
مقاله    17مقالت مذکور در    ی در بررس   ن ی استخراج شده است. همچن 

  ی ها تم ی مقاله الگور   36استفاده شده است. در    ق ی تحق   م ی از پزشک در ت 
و عملکرد    ن یی پا   ت ی بوده است که شفاف   اه ی جعبه س مورد استفاده از نوع  

  د ی عبه سف ج مورد استفاده از نوع    تم ی مقاله الگور   5و در    رد دا   ی خوب 
-مشاهده می   4که خروجی آن بر حسب درصد در شکل    بوده است 

ود. ش 

 معیارهای ارزیابی -5جدول

 تعییرات  ۀدامن انحراف معیار  واریانس  میانگین  حداکثر  حداقل 

Accuracy 55/67 100 53/90 47/57 5/7 45/32 

AUC 6/68 69/99 87/88 63/50 11/7 09/31 

Specificity 65/55 100 25/89 22/82 06/9 35/44 

Sensitivity 17/31 100 12/87 7/193 91/13 83/68 
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 ... مرسوم  یهابا روش یعملکرد هوش مصنوع ۀسیمقا همکاران   و زروج حسینی

 

 1404سال  ، 5 ، شمارۀ 25دورۀ  مجله ديابت و متابوليسم ايران

 

 
 

 ابت یدشیپ صی تشخ یبرا یهوش مصنوع یهاتمیکاررفته در الگورمطالعات به یهایژگ یو ی اسهینمودار مقا -4 شکل

 
دیابت  های مورد استفاده جهت تشخیص پیش در بررسی گایدلین 

ن بود که در روش مرسوم از تست  آ ، نتایج مبین  Up to dateدر  
HbA1c    وFPG    ن تعیین گردید است آ ستانه برای  آ استفاده و حد  

تاکنون    up to dateهای انجام شده در سایت  ا در طی بررسی امّ   . [ 19] 
های هوش مصنوعی هیچ گایدلین  برای تشخیص با کمک روش 

میزان حساسیت و    ۀ بالینی منتشر نشده است پس از بررسی و مقایس 
با روش ویژگی روش  کمک هوش  های مرسوم  با  های تشخیص 

های  کلی عملکرد الگوریتم طور ن بود که به آ مصنوعی، نتایج مبین  
ثرتر بوده است که در  ؤ هوش مصنوعی در تشخیص پیش دیابت م 

 مده است. آ   6جدول  
 

 دیابت در هوش مصنوعی و دو گایدلاین بالینی حساسیت و ویژگی پیش مقایسۀ  -6جدول 

 نام روش حساسیت  ویژگی

1%/72 %6/60 HbA1c 

%8/92 89% FPG 

100% 100% AI 

HbA1c: Glycated hemoglobin, FPG: Fasting plasma glucose, AI: Artificial intelligence  

 

 بحث 

استفاده    ۀ هدف از این مطالعه، مروری بر مطالعاتی است که در زمین   
میزان اثربخشی  از یادگیری ماشین در تشخصی دیابت است تا بتوان  

بینی دیابت مورد ارزیابی قرار  یادگیری ماشین را در تشخیص و پیش 
صورت  تواند به استفاده از هوش مصنوعی در علم پزشکی می   . داد 

بیماری  در تشخیص  زیرا  تلقی شود،  کاهش  مفید  بیمار،  درمان  ها، 
تواند  کند. و از طرفی هم می پشتیبانی از بیمار کمک می   ۀ خطاها و ارائ 

نگرانی چالش  و  خروجی  ها  است  ممکن  کند.  ایجاد  هم  را  هایی 
های  شاخص های هوش مصنوعی در تشخیص دیابت از نظر  الگوریتم 

امّ باشد  داشته  مناسبی  عملکرد  حضور  ارزیابی  عدم  صورت  در  ا 
صص، عدم  خ پزشک در تیم تحقیق و عدم استفاده از نظر پزشک مت 

تواند خطاهایی را  ها می گوریتم ارزیابی بالینی قوانین استخراج شد از ال 
ثیر قرار بدهد. همچنین نوع  أ ایجاد و عملیاتی شدن مدل را تحت ت 

تواند در  )از لحاظ جعبه سیاه یا سفید( نیز می   الگوریتم مورد استفاده 
عنوان یکی از عوامل  ن به آ ثیر گذار باشد که باید به  أ قوانین بالینی ت   ۀ ارائ 

ارزیابی و استفاده از مدل ارائه شده مورد توجه  ثر اثر بخشی در  ؤ م 
های تشخیص بیماری  قرار داد. یکی از موارد اصلی کاربرد الگوریتم 

دیابت است. زیرا شناسایی افرادی در  پیش بینی بیماران  دیابت، پیش 
معرض خطر بالیی برای ابتلا به دیابت و مداخله و درمان مناسب  

می می  جلوگیری  بیماری  تشدید  از  از  .  [ 8،   13] کند  تواند  استفاده 
به روش  مصنوعی  هوش  روش های  مانند  جای  مرسوم  های 
سطح  اندازه  بیماری  می   FPGو    HbA1cگیری  تشخیص  در  تواند 
امّ پیش  کند؛  شایانی  کمک  به دیابت  امروزه  محدودیت ا  های  دلیل 

صورت  ها در بالین به های هوش مصنوعی استفاده از الگوریتم روش 
نتایج مبین آن بود    ، در بررسی مقالت مشابه  شود. عملی استفاده نمی 

های بالینی، حضور پزشک در مطالعه، نوع  که در مقالت به ارزیابی 
بینی پیش دیابت توجه  ها و میزان کارایی الگوریتم در پیش الگوریتم 

 نشده است. 
استفاده از یادگیری   ۀ مقاله در زمین  223های انجام شده در با بررسی   

مبین   نتایج  دیابت  تشخیص  در  الگوریتم  آ ماشین  که  بود    RFن 
. این الگوریتم قادر به تشخیص الگوها و  است رتکرارترین الگوریتم  پُ
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های بزرگ و  تواند داده های پزشکی است و می روابط پیچیده در داده 
ها و  که در پزشکی، حجم داده   نجا آ پیچیده را پردازش نماید و از  

تواند به بهبود تحلیل  ها می ، استفاده از این الگوریتم است اطلاعات بال  
به همین علت از این   . تر کمک کند های دقیق بینی ها و ارائه پیش داده 

الگوریتم در پژوهش تشخیص دیابت بیشتر استفاده گردید ولی نقطه  
   RFاست ضعف اصلی این الگوریتم در بالین مورد توجه قرار نگرفته  

یکی از    RFالگوریتم    . پیچیده شناخته شده است   عنوان مدل معمولً به 
  های های جعبه سیاه معمولً مدل الگوریتم جعبه سیاه است الگوریتم 

راحتی توسط  پیچیده یادگیری ماشینی هستند که عملکرد درونی آنها به 
  است انسان قابل تفسیر نیست و دارای عملکرد بال و شفافیت پایین 

درصد از مقالت    88که در   نیست ل استفاده  ب به همین دلیل در بالین قا 
الگوریتم  این  از  بررسی،  مطالع مورد  در  است.  شده  استفاده    ۀ ها 

Sharma   های یادگیری  مدل ن بود که  آ نتایج مبین    [ 15]   و همکاران
های عصبی بازگشتی،  های عصبی مصنوعی تا شبکه عمیق، از شبکه 

در این    بینی بیماری با دقت بیشتر دارند. پیش توانایی بازده بیشتری در  
ها نیز توجهی  های بالینی انجام نشده و به نوع الگوریتم پژوهش ارزیابی 

حاضر به تمامی این موارد پرداخته    ۀ که در مطالع صورتی در   نشده است. 
   شده است. 

دیگری که در این مقالت مورد بررسی قرار گرفت حضور    شاخص   
پیش  مقالت  در  بالینی  متخصص  ابتلا حداقل یک  بیماری    بینی  به 

های بالینی هوش  دیابت است زیرا پزشکان نقش مهمی در ارزیابی 
محیط  در  مراقبت مصنوعی  می های  ایفا  بهداشتی  حضور  های  کنند 
هت ارزیابی ایمنی، کارایی و پیامدهای عملی  ج پزشکان متخصص  

، زیرا آنها تخصص بالینی و  است ابزارهای هوش مصنوعی ضروری 
  ۀ در مرحل   . [ 21]   کنند درک مراقبت از بیمار را به فرآیند ارزیابی وارد می 

های  ، نقش پزشک حیاتی است، زیرا کیفیت داده ها پردازش داده پیش 
مدل  عملکرد  بر  مستقیمی  تأثیر  هوش  ورودی  تشخیصی  های 

مصنوعی دارد. پزشک در انتخاب و تأیید متغیرهای کلیدی نقش دارد  
که ویژگی  یا  تا اطمینان حاصل شود  آزمایشگاهی  بالینی،  های مهم 

همچنین، او  . [ 22] اند تصویربرداری به درستی در مدل گنجانده شده 
های نادرست، ناسازگار یا نویزدار از کاهش  با شناسایی و حذف داده 

می  جلوگیری  مدل  داده برچسب .  [ 23] کند  دقت  ها  گذاری صحیح 
مدل  در  که  است  پزشک  وظایف  از  دیگر  یادگیری  یکی  های 

ویژه نظارت  اهمیت  کنترل  شده  بر  پزشک  این،  بر  علاوه  دارد.  ای 
داده  می کیفیت  اطمینان حاصل  و  دارد  نظارت  اطلاعات  ها  که  کند 

بدون خطا هستند  و  منطقی  بالینی  نظر  از  مشارکت  [ 24]   ورودی   .
های  پزشکان نه تنها در ارزیابی اولیه، بلکه در نظارت مداوم سیستم 

آنها   که  شود  حاصل  اطمینان  تا  است  ضروری  مصنوعی  هوش 
کنند و بر مراقبت از بیمار یا  همچنان نیازهای بالینی را برآورده می 

نمی   ۀ رابط  منفی  تأثیر  بیمار  و  نقش  [ 25] گذارند  پزشک  همچنین   .
خروجی مدل و تفسیر نتایج تشخیصی اهمیت    پزشک در اعتبارسنجی 

های مدل  بینی تواند بررسی کند که آیا پیش عنوان مثال، او می دارد؛ به 
خوانی دارند و در صورت نیاز، اصلاحات لزم  با معیارهای بالینی هم 

کلی،  طور استفاده از آن پیشنهاد دهد. به   ۀ را در طراحی مدل یا نحو 
به  هوش  پزشک  پژوهشگران  کنار  در  متخصص  ناظر  یک  عنوان 

های تشخیصی  مصنوعی، به بهبود دقت، قابلیت اطمینان و کارایی مدل 
ن بود که تنها  آ   ۀ در برسی مقالت نتایج بیان کنند   . [ 26]   کند کمک می 

درصد از مقالت پزشک در تیم پژوهشی حضور داشته است    2در  
  شود حتماً لذا توصیه می   است، ضعف در تحقیقات    ۀ که نشان دهند 

در    . در پژوهش حضور داشته باشد   پزشک   حداقل یک متخصص 
حضور پزشک در تیم تحقیق اشاره  و همکاران نیز به    Guan  ۀ مطالع 

امّ است  بیماری  شده  تشخیص  کیفیت  یا  و  توانایی  به  مطالعه  در  ا 
   . [ 14]   دیابت توجهی نشده است پیش 

ثیر  أ به جهت تضمین ایمنی و ت  های ارزیابی هوش مصنوعی   شاخص   
ابزارهای هوش مصنوعی در بهبود عملکرد بالینی در بالین از اهمیت  

که هوش مصنوعی در بهبود  . درحالی [ 27] حیاتی برخوردار هستند  
هایی مانند سوگیری  ، چالش است ثر  ؤ تشخیص و مراقبت از بیمار م 

برخی از   « جعبه سیاه » ها، و ماهیت الگوریتمی، حریم خصوصی داده 
ای را با کارایی و قابل اعتماد  های هوش مصنوعی، تناقضات بالقوه مدل 

ویژه  هوش مصنوعی، به  [ 28]  دهد بودن آنها در عمل بالینی نشان می 
یادگیری ماشین ، اغلب با توانایی آن در تشخیص الگوها و روابط  

شود که ممکن است به آسانی برای  ها مشخص می پیچیده در داده 
  . [ 29،   30] رویکردهای آماری مرسوم آشکار یا قابل دسترسی نباشد  

ارزیابی مورد بررسی قرار گرفته   شاخص  4در مقالت مورد بررسی  
  شاخص ، 100- 67/ 55ۀ  در باز  Accuracyصحت    شاخص است که 

AUC   شاخص ،  99/ 69- 68/ 6  ۀ در باز  Specificity   55/ 65ۀ  در باز -
شده    100- 31/ 17  ۀ باز   در Sensitivity   شاخص و    - 100 گزارش 

ن بودکه در  آ نتایج مبین    [ 16] و همکاران    Chaki  ۀ است. در مطالع 
و سایر معیارهای عملکرد دست    AUCبرخی از آنها به دقت بال،  

ن بود که، الگوریتم درخت  آ   ۀ طور کلی نتایج بیان کنند ا به یافتند. امّ
درصد در تشخیص    90/ 04تصمیم نتایج بهتری را نشان داد و به دقت  

نوع   یافت.   دو دیابت  قبیل  امّ   دست  از  مواردی  مطالعه  این  در  ا 
  تحلیل و های مورد استفاده، تجزیه های بالینی و نوع الگوریتم ارزیابی 

نشده است و به حضور پزشک در تیم پژوهش نیز توجهی نشده و  
دیابت نیز پرداخته نشده  همچنین به بررسی تشخیص بیماران پیش 

 است. 
قوانین به دست    الینی یک روش مهم است که باید حتماً ب ارزیابی    
های  مده یک روش برای تشخیص و یا درمان باید از طریق روش آ 
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 . [ 17،   18] ارزیابی شود    مرسوم بالینی مانند دلفی و فکوسگروپ و... 
پیش    بیماری  تشخیص  بررسی  جهت  از  معمولً  پزشکان  دیابت، 

مطالع استفاده می   FPGو    HbA1cهای  شاخص  و    Vera  ۀ کنند. در 
آستان  حد  پیش   HbA1c  ۀ همکاران،  با    5/ 5دیابت  برای  درصد، 

در    . [ 31]   درصد تعیین شد   63/ 1درصد و ویژگی    60/ 5حساسیت  
همکاران،   Shimodaira  ۀ مطالع  برای    HbA1c  ۀ ستان آ حد    و 
،  شد   مشخص   72/ 1% و ویژگی    60/ 6% ، با حساسیت  5/ 7% دیابت  پیش 

دیگری، نشان    ۀ در مطالع   . [ 11] اگرچه دقت آن پایین گزارش شده بود  
شد   )   FPGداده  بال  ) 89/ 0% حساسیت  ویژگی  و  برای  92/ %8 (   )

تشخیص دیابت دارد، که ممکن است حاکی از عملکرد معقول برای  
پیش  باشد تشخیص  این حال، تشخیص زودهنگام    . [ 32]   دیابت  با 

با چالش پیش  نوسانات  دیابت  از جمله  است،  مواجه  متعددی  های 
محدودیت   و  محیطی،  و  فردی  متغیرهای  تأثیر  گلوکز،  سطح 

ها اغلب حساسیت  . این روش FPGو    HbA1cهای رایج مانند  روش 
و ویژگی کافی برای شناسایی دقیق افراد در معرض خطر را ندارند و  

  دیابت را در مراحل اولیه شناسایی نکنند ممکن است مواردی از پیش 
 [33 ] . 
بهره    با  مصنوعی  الگوریتم هوش  از  و  گیری  ماشین  یادگیری  های 

داده  گسترد تحلیل  می   ۀ های  با  بالینی،  مرتبط  پنهان  الگوهای  تواند 
شده  سازی بینی شخصی های پیش دیابت را شناسایی کرده و مدل پیش 

های  ها با ترکیب متغیرهای مختلف مانند ویژگی ارائه دهد. این مدل 
و نتایج آزمایشگاهی، قادرند  ای  های تغذیه ژنتیکی، سبک زندگی، داده 

دقیق  را  دیابت  به  ابتلا  هوش  خطر  این،  بر  علاوه  کنند.  ارزیابی  تر 
های طولی و الگوهای تغییرات در طول زمان  تواند از داده مصنوعی می 

ارائ  مداخلات    ۀ برای  امکان  و  کرده  استفاده  زودهنگام  هشدارهای 
   [. 34]   کند مؤثرتر را فراهم    ۀ پیشگیران 

های  با این وجود، یکی از موانع اصلی در پذیرش بالینی الگوریتم   
 ( Black Box)  سیاه   های جعبه هوش مصنوعی، شفافیت پایین مدل 

است که منجر به عدم اعتماد پزشکان و بیماران به تصمیمات آنها  
مدل می  این  پردازشی شود.  فرآیندهای  دارای  اغلب  و    ها  پیچیده 

های  گیری ها و تصمیم بینی غیرقابل توضیح هستند که درک منطق پیش 
دشوار می  را  این وضعیت، روش آنها  بهبود  برای  مانند  سازد.  هایی 

های  های تصمیم و شبکه های تفسیرپذیرتر )مانند درخت مدل   ۀ توسع 
،  LIME  و  SHAP پذیری مانند های توضیح بیزین(، استفاده از تکنیک 

  36]   اند های پزشکی با دانش متخصصان پیشنهاد شده و ترکیب داده 
 ،35 ] . 
های هوش مصنوعی  شده از الگوریتم علاوه بر این، قوانین استخراج   

امکان  و  کارایی  هزینه،  نظر  از  شوند.  باید  ارزیابی  عملی  سنجی 

توانند  که این قوانین در مطالعات بالینی معتبر تأیید شوند، می صورتی در 
عنوان ابزار کمکی در کنار  های تشخیصی ادغام شده و به در گایدلین 

های استاندارد مورد استفاده قرار گیرند. چنین رویکردی نه تنها  روش 
شود، بلکه به افزایش  باعث بهبود دقت و کارایی غربالگری دیابت می 

  های بالینی کمک خواهد کرد اعتماد و پذیرش این فناوری در محیط 
 [37 ] . 
عملکرد هوش مصنوعی در  ن بود که  آ نتایج کلی این مطالعه مبین    

به تشخیص پیش  قابل دیابت  از روش طور  بهتر  های مرسوم  توجهی 
ها قابل ارزیابی بالینی  ا از آنجا که بسیاری از این الگوریتم است، امّ 

تیم نبوده  در  متخصصین  نداشته اند،  حضور  پژوهشی  و  های  اند، 
اند، هنوز  بوده   ( Black Box)  سیاه   های مورد استفاده عمدتاً جعبه روش 

استفاده  ندارند قابلیت  بالینی  محدودیت   . ی  این  برطرف  چنانچه  ها 
عنوان یک روش نوین با عملکرد  تواند به شوند، هوش مصنوعی می 

 . دیابت مورد استفاده قرار گیرد بهتر در تشخیص پیش 

 

 ها محدودیت 

به الگوریتم     را  روی  ها  بر  و  داده  قرار  بررسی  مورد  کلی  صورت 
ها را مورد  مطالعه انجام نشده است. حجم نمونه  ها جزئیات الگوریتم 

بررسی قرار نداده زیرا بیشتر بر روی کاربردپذیر بودن الگوریتم در  
بالین، ارزیابی قوانین بالینی و حضور پزشک و نوع الگوریتم تمرکز  

 . کرده ایم 
 

 کارهای آینده 

  ۀ ینده نقاط ضعف و قوت الگوریتم جعب آ گردد در کارهای  پیشنهاد می   
 سفید نیز مورد بررسی قرار بگیرد. 

ها هزینه آنان را  در صورت استخراج قانون بالینی با کمک الگوریتم 
 ی آن را  نیز بررسی کنیم. ج سن مورد بررسی قرار داده و امکان 

 

 تعارض منافع
اعلام می    که هیچ نویسندگان  پژوهش    گونه دارند  در  منافعی  تضاد 

 حاضر وجود ندارد. 
 

 سپاسگزاری 
شاهرود   ی دانشگاه علوم پزشک   ی از معاونت پژوهش   له یوس ن ی بد   

 ن یانجام ا   ند یدر فرا   یو پژوهش   یارزشمند علم   یها ت ی حما  لی دل به 
معاونت نقش   ن ی ا  ی ها ی بان ی. پشت شود ی م   ی قدردان  مانه ی مطالعه صم 

پژوهش داشته   ن ی ا  لی و تکم   ل یمراحل اجرا، تحل   لی در تسه   یمهم 
 است.
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 1 وستیپ
مقا  ریز  جدول  مطالعه   یهاریمتغ  ۀسیجدول  در  استفاده  مورد 

  د یسف ای  اهیمورد استفاده و جعبه س تمیکه شامل نوع الگور  است 

ت  این، حضور  آبودن   در  پزشک  جهت    قیتحق  میعدم حضور 
بررس  یبررس کار،  همچن  ی نیبال  یاب ی ارز  یروند    ی بررس  ن یو 

 ت. ها استمیعملکرد الگور ۀسیها جهت مقا  شاخص

 

 جدول بررسی مقالات

 ارزیابی قوانین بالینی
پزشک متخصص شرکت  

 داشته یا خیر؟ 
 ردیف الگوریتم  نوع الگوریتم 

NO Sensitivity = 99.25% NO Black Box T2FNN (1) 

NO Accuracy = 78.65% NO Black Box ANN (2) 

NO 
Accuracy =86% 
AUC=93.4% * NO Black Box ANN (3) 

NO 
Accuracy =99.4% 

F1=0.99 
AUC=99% 

NO Black Box XGBoost (4) 

NO 

Accuracy=85% 
Sensitivity=88.5% 
Specificity=84.7% 

F1=38.0% 

NO 
Black Box 
Black Box 
Black Box 

SVM 
Random Forest 

Gradient Boosting 
(5) 

NO 
Sensitivity=100% 

Specificity=80.66% 
YES Black Box Decision Tree (6) 

NO Accuracy=90% NO Black Box ANN (7) 

NO 
Accuracy=77.5% 

Sensitivity =66.7% 
F-Measure=74.3% 

NO Black Box ANN (8) 

NO Accuracy = 97.3% NO Black Box Random Forest (9) 

NO F1=97.3 % YES Black Box RNN (10) 

NO 
Accuracy=98.95% 

F1-Score=99% 
NO Black Box Random Forest (11) 

YES AUC = 82.7% YES Black Box ANN (12) 

YES 
Accuracy=86.84% 
Sensitivity=69.54% 

NO Black Box Fuzzy Inference System (13) 

NO 
Accuracy=98.73% 

Sensitivity=98.01% 
YES Black Box Random Forest (14) 

YES 
Accuracy=99.06% 
Sensitivity=99.24% 
Specificity=99.00% 

NO Black Box 
T2-FNN 

(type-2 fuzzy system - neural networks) 
(15) 

NO Accuracy = 78.57% NO Black Box ANN (16) 

YES Accuracy=67.55% NO Black Box ACO (17) 

NO 

Accuracy=91.87% 
Sensitivity=94.15% 
Specificity=89.16% 
F-Measure= 88.57% 

NO Black Box SVM (18) 

YES 
Accuracy=98.4% 
Sensitivity=99.1% 
Specificity=94.3% 

NO Black Box RBFNN (19) 
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F1 Score= 99% 

YES 
Accuracy=94% 
Sensitivity=93% 
Specificity=94% 

YES Black Box SVM (20) 

NO 

Accuracy=77% 
Precision=77% 

Sensitivity =77% 
F-Score= 76% 

AUC=83% 

NO white Box Logistic Regression (21) 

YES Accuracy=91.67% NO Black Box Fuzzy Decision Tree (22) 

NO AUC = 97.15% NO Black Box SB-SVM (23) 

NO AUC=84% NO Black Box XGBoost (24) 

NO Accuracy=86% NO Black Box Gradient Boosting (25) 

NO AUC=84.1% YES Black Box ANN (26) 

 NO 
Accuracy=87% 

Sensitivity =93.3% 
Specificity =74% 

YES Black Box SVM (27) 

NO Accuracy=89.74% NO Black Box 
LDA 

MWSVM 
(28) 

NO Accuracy=93.75% NO Black Box Decision Tree (29) 

NO Accuracy=76% NO Black Box Random Forest (30) 

yes Accuracy=75% NO Black Box SVM (31) 

NO 

Accuracy=98.1% 
AUC=98.3% 

Sensitivity=98.4% 
Specificity=97.5% 

NO Black Box ANN (32) 

NO Accuracy = 97.14% NO Black Box SVM-RBF (33) 

NO Accuracy =100% NO Black Box SVM (34) 

NO Accuracy =80.47% NO Black Box Optimised-ANFIS (35) 

NO 
Accuracy = 90.04% 
Sensitivity=87.27% 
Specificity=91.28% 

NO Black Box 
K-means 

J48 
(36) 

NO 
Accuracy = 89.10% 
Sensitivity=85.18% 
Specificity=91.50% 

NO Black Box MAIRS2 (37) 

NO 
Accuracy =77.61% 
Sensitivity=89.02 % 

NO white Box Logistic Regression (38) 

NO 
Accuracy=99.5% 

Sensitivity=98.48% 
Specificity=100% 

NO Black Box DNN (39) 

NO 
Sensitivity =90.4% 

Precision =68% 
NO Black Box Random Forest (40) 

NO 
Accuracy=78.9% 

AUC= 86.9% 
NO Black Box SVM (41) 

NO Accuracy=98.59% NO 
Black Box 
Black Box 

Random Forest 
KNN 

(42) 

NO 
Accuracy=93.8% 
ROC-AUC=96% 

NO Black Box ANN (43) 
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NO 
sensitivity = 98% 

AUC=97% 
NO Black Box Random Forest (44) 

NO 
sensitivity = 73% 

AUC= 79.8% 
NO Black Box Stacking (45) 

NO Accuracy = 80.5% NO Black Box Random Forest (46) 

NO Accuracy = 98% NO Black Box 
GRU 

LSTM 
(47) 

NO Accuracy=87.95% NO Black Box Fuzzy System (48) 

NO 
Accuracy=75.1% 

Sensitivity=73.39% 
Specificity=78.4% 

NO Black Box Fuzzy System (49) 

NO 
Accuracy=97.2% 
Sensitivity=97.8% 
Specificity=96.6% 

NO Black Box ANN (50) 

NO 
Accuracy= 91.66% 
Sensitivity= 85% 

Specificity= 96.15% 
NO Black Box SW-FFANN (51) 

NO Sensitivity = 95.2% NO Black Box J48 (52) 

NO 
Accuracy= 97.87% 
Sensitivity =100% 

Specificity =95.45% 
NO Black Box SVM (53) 

NO Accuracy = 94.5% yes Black Box ANFIS (54) 

NO 
Accuracy =96.53% 

Sensitivity = 93.28% 
F1 Score= 94.88% 

NO Black Box FFANN (55) 

NO 

Accuracy= 95.56% 
F1-Score= 95.6% 

AUC-ROC= 95.5% 
Sensitivity = 96.3% 

NO Black Box Bagging (56) 

NO 
Accuracy= 77.6% 
Sensitivity = 76% 

F1= 75% 
NO white Box Logistic Regression (57) 

NO Accuracy= 97.24% NO Black Box Gradient Boosting (58) 

NO Accuracy= 84.24% NO Black Box FCS-ANTMINER (59) 

NO Accuracy= 90.43% yes Black Box Random Forest (60) 

NO Accuracy= 94.5% NO Black Box XGBoost (61) 

NO Accuracy= 79.8% NO Black Box RBFNN (62) 

NO Accuracy= 98.71% NO Black Box Random Forest (63) 

NO Accuracy= 98% NO Black Box Random Forest (64) 

NO Accuracy= 77.6% NO Black Box Ensemble (65) 

NO Accuracy= 90.3% NO Black Box Fuzzy System (66) 

NO Accuracy= 97.55% NO Black Box SVM (67) 

NO 
Accuracy=71.7% 

ROC=87.5% 
NO Black Box Decision Tree (68) 

NO ROC=88.3% yes Black Box Random Forest (69) 
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NO ROC=88.3 yes Black Box Random Forest (70) 

NO ROC=78.74% NO Black Box XGBoost (71) 

NO 
Accuracy=94.92% 
Sensitivity=92.98% 

NO 
Black Box 
Black Box 

SVM 
BRF 

(72) 

NO 
Accuracy=88.21% 
Sensitivity =89.9% 

NO 
Black Box 
Black Box 

CNN 
SVM 

(73) 

NO Accuracy=96.35% NO Black Box SVM (74) 

NO Accuracy=97.18% NO Black Box ANN (75) 

NO Accuracy=97.44% NO Black Box ANN (76) 

NO 
Accuracy=90% 
AUC =94.8% 

NO Black Box LightGBM (77) 

NO Accuracy=88% NO 
Black Box 
Black Box 

SVM 
Random Forest 

(78) 

NO Accuracy=90.26% NO Black Box DNN (79) 

NO 
Accuracy=92.55% 
Sensitivity=93.40% 
Specificity=91.74% 

NO Black Box HPM provided (80) 

NO Accurac=97.33% NO Black Box extra trees classifier (81) 

NO 

Accuracy=81.01% 
Sensitivity=79.5% 

AUC  = 87/1% 
NO Black Box Random Forest (82) 

NO Accuracy=92.2% NO Black Box HBGB (83) 

NO Accuracy=86.2% NO Black Box ANN (84) 

NO 
Accuracy= 96.8% 

Sensitivity = 95.4% 
AUC= 98.2% 

NO Black Box Hyper AdaBoost (85) 

NO 
Accuracy=80.2% 

ROC=87.5% 
NO Black Box 

LDA-based Genetic Algorithm with 
Generalized Regression Neural Network 

(86) 

NO 

Accuracy= 87.5% 
F1= 88.3% 

Sensitivity= 86.7% 
Specificity= 89.2% 

NO Black Box GHNN (87) 

NO 

Accuracy= 93.6% 
Sensitivity= 92.4% 
Specificity= 94.8% 

F1= 93.0% 
ROC= 96.2% 

NO Black Box 
SIRR 

Convolution Trained Compositional Pattern 
Neural Network 

(88) 

NO Accuracy=77.73% NO 
white Box 
Black Box 

Logistic Regression 
Decision Tree 

(89) 

NO Accuracy=92.2% NO Black Box EFNNAO (90) 

NO Accuracy=99.2% NO 
Black Box 
Black Box 

k-NN 
Decision Tree 

(91) 

NO Accuracy=86.26% NO Black Box DNN (92) 

NO Accuracy=82.2% NO Black Box Region-Based Support Vector Machine (93) 

NO Accuracy=99% NO Black Box Bagging (94) 
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NO Accuracy=92% NO Black Box Gradient Boosting Algorithm (78) 

NO 

Accuracy=80.96% 
Sensitivity  =78.79% 
Specificity =70.27% 

F1 Score =74.16 

NO Black Box FCM–FMM (95) 

NO Accuracy=86% NO Black Box LightGBM (96) 

NO Accuracy=88.35% NO Black Box Ant Colony Optimized Neural Network (97) 

NO Accuracy=92.8% NO Black Box ANN (98) 

NO 
F1 Score= 0.66 
Accuracy= 85% 

AUC= 91% 
NO Black Box ANN (99) 

NO AUC=68.9% NO White Box Nave bayze (100) 

NO Specificity= 71.32% YES White Box Logistic Regression (101) 

NO 
Accuracy =98% 

F1= 0.98 
Sensitivity=97% 

NO Black Box CNN (102) 

NO Accuracy= 98% NO Black Box MLP (103) 

NO 
Accuracy= 97.5% 

Sensitivity=75.78% 
Specificity=80.97% 

NO Black Box 
EFCS 

(evolving fuzzy classification systems) 
(104) 

NO 
Accuracy= 97.22% 
Sensitivity= 100% 

Specificity= 95.65% 
YES Black Box SVM (105) 

NO 

Accuracy= 75.03% 
Sensitivity= 64.52% 
Specificity= 75.77% 

AUC= 78.05% 

NO Black Box XGBoost (106) 

NO AUC=89% NO Black Box Random Forest (107) 

NO AUC=91% YES Black Box Random Forest (108) 

NO 

Accuracy=77.6% 
Sensitivity= 84% 

Specificity= 76.1% 
AUC=88.4% 

NO Whith box Generalized Additive Model (109) 

NO 
Accuracy = 80.8% 
Sensitivity= 90.2% 

AUC=87.6% 
NO Black Box 

ResNet-18 
MIL 

(110) 

NO AUC =91.85% NO Black Box 
WDD 

(weighted diversity density) 
(111) 

NO 
Accuracy = 98.89% 
Sensitivity=98.97% 

YES White box Data Space Landmark Refiner (112) 

NO 

Accuracy =94.1% 
Sensitivity=96.2% 
Specificity =94.9% 

F1= 95.2% 

NO Black Box SVM (113) 

NO 
Sensitivity= 84.91% 
Specificity= 90.1% 
Accuracy= 88.65% 

NO White box ANFIS (114) 

NO AUC=75.9% NO Black Box Random Forest (115) 

NO Specificity = 96.53% NO Black Box Bootstrap Forest (116) 
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AUC = 99.69% 
Accuracy = 97.43% 

NO 
Sensitivity= 85% 
F1-score= 83% 

NO Black Box KNN (117) 

NO Accuracy=76% NO Black Box RLEFRBS (118) 

NO 
Accuracy= 89.53% 
Sensitivity= 97.10% 
Specificity= 75.62% 

NO Black Box MLP (119) 

NO 
Sensitivity = 76% 
Accuracy=78% 

NO Black Box Decision Tree (120) 

NO 
Accuracy= 78.57% 
Sensitivity= 70.91% 

F1= 70.27% 
NO Black Box SVM (121) 

NO Sensitivity = 0.775 NO White Box Hoeffding Tree (122) 

NO 
Accuracy= 91.4% 
Sensitivity= 94.8% 
Specificity= 90.1% 

NO Black Box CMVRO (123) 

NO 

Accuracy= 98.51% 
Sensitivity= 98.64% 
Specificity= 98.38% 

AUC = 98.61% 
F-score= 98.47% 

NO Black Box LS-SVM (124) 

NO Accuracy=97.76% NO Black Box EAGA-MLP (125) 

NO 

Sensitivity= 94.63% 
Specificity= 73.34% 
Accuracy= 92.58% 
F-score= 94.22% 

NO Black Box DNN (126) 

NO 
Sensitivity=86.82% 
Accuracy = 89.24% 

F1= 88.02 % 
NO Black Box Random Forest (127) 

NO Accuracy =84.5 ٪ NO Black Box ANN (128) 

NO Accuracy = 97% NO Black Box Random Forest (129) 

YES Accuracy = 94% YES Black Box Fuzzy system (130) 

NO Accuracy =9.52% NO Black Box ANN (131) 

NO 
Accuracy=96.3% 
Sensitivity=94.8% 

NO Black Box MLP (132) 

NO Accuracy=98.87% YES Black Box Decision Tree (133) 

NO AUC=87% NO Black Box XGBoost (134) 

NO AUC=76.70% NO Black Box Random Forest (135) 

NO Accuracy=96.1% NO Black Box Decision Tree (136) 

NO 

AUC=84.18 
Sensitivity=31.17 
Specificity=96.85 
Accuracy=84.28 

NO Black Box deep learning (137) 

NO AUC=84.29% NO Black Box HyperTab-LIME (138) 

NO Accuracy=94% NO Black Box Random Forest (139) 

NO Accuracy=97% YES White Box Expectation-Maximization (140) 
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NO 
Accuracy =99.36% 
Sensitivity  =99.5% 
Specificity=99.7% 

NO Black Box Mixture of Experts (141) 

NO Accuracy=100% NO Black Box Fuzzy system (142) 

NO 
Accuracy =98.61% 
Sensitivity  =97.93% 

NO Black Box machine learning (143) 

NO AUC=80.4% NO White box Enhanced Dynamic Linear Model (144) 

NO 
Accuracy =90.36% 
Sensitivity  =94% 

Specificity=83.58% 
NO Black Box XGBoost (145) 

NO Accuracy =96.05% NO White box 
CARD 

GA 
(146) 

NO Accuracy= 0.9948 NO Black Box Class Weighting (147) 

NO Accuracy =98.80% NO Black Box Dragonfly Algorithm (148) 

NO 
Accuracy :93.3% 

Sensitivity: 93.71% 
Specificity: 92.8% 

YES Black Box ANN (149) 

NO Accuracy=100 NO Black Box KNN (150) 

NO 
Accurac= 0/8715 

AUC= 98.11% 
NO Black Box Random Forest (151) 

NO Accuracy=90.1 NO Black Box EML (152) 

NO 
Accuracy= 88.26% 
Sensitivity=86.93% 
Specificity =94.03% 

NO Black Box ANN (153) 

NO 
Accuracy =96.03% 

Sensitivity=96% 
NO Black Box SVM (154) 

NO 
Accuracy= 88.18% 

Sensitivity=88% 
Specificity =94% 

NO Black Box NSGA-II (155) 

NO Accuracy=89.47% NO White box ANFIS (156) 

NO Sensitivity=100% NO Black Box Deep learning (157) 

NO Accuracy = 96.58% NO Black Box SVM (158) 

NO 
Accuracy = 87.15% 

AUC=98.11% 
NO Black Box Random Forest (159) 

NO Accuracy=77.6% NO Black Box Random Forest (160) 

NO 

Accuracy= 97.96% 
Sensitivity= 98.10% 
Specificity= 97.82% 

NO Black Box Firefly Algorithm (161) 

NO 
Accuracy=82.46% 

Sensitivity= 68.23% 
NO White Box Logistic Regression (162) 

NO Accuracy=98% NO Black Box ANN (163) 

NO Accuracy=91% NO White Box PLS (164) 

NO Accuracy=98% NO Black Box ANN (165) 

NO Accuracy=82.30% NO Black Box ANFIS (166) 
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Sensitivity= 66.23% 
Specificity= 69.76% 

NO 
Accuracy=90.76% 

Sensitivity= 85.82% 
NO 

Black Box 
Black Box 

Adaboost 
k-NN 

LightGBM 
(167) 

NO 
Accuracy=95% 

Sensitivity= 66% 
AUC=98% 

NO Black Box Gradient Boosting (168) 

NO 
Accuracy= 90.63% 

Sensitivity = 93.18% 
Specificity=85.00% 

NO Black Box 
TFKNN 

(Tuned fuzzy KNN based on uncertainty 
classifiers) 

(169) 

NO 

Accuracy=89.63% 
Sensitivity = 86.87% 
Specificity= 89.8% 

NO Black Box Random Forest (170) 

NO Accuracy=95.81% NO Black Box EBOT (171) 

NO Accuracy=98.46% NO Black Box stacking ensemble (172) 

NO Accuracy =100 % NO Black Box ANN (173) 

NO 
Accuracy=96.84% 
Sensitivity = 93% 

NO Black Box MJ48 (174) 

NO 
Accuracy=95.5% 
Sensitivity=96.5% 
Specificity=93.5% 

NO Black Box 
Particle Swarm Optimization 

Fuzzy C-Means 
(175) 

NO 
Accuracy= 88% 

Sensitivity = 89% 
AUC= 89% 

NO Black Box Decision Tree (176) 

NO 
Accuracy = 94.1% 
sensitivity = 90% 
specificity=95.5% 

NO Black Box ANN (177) 

NO 

Accuracy = 94.1% 
sensitivity = 96.2% 
specificity = 94.9% 
F1 score =95.2% 

NO Black Box SVM (178) 

NO Accuracy = 79% NO Black Box Clustring (179) 

NO 
Accuracy=79% 

sensitivity = 50% 
NO Black Box Clustring (180) 

NO sensitivity =98% NO White Box Logistic Regression (181) 

NO Accuracy=71% NO Black Box Grey Wolf Optimization (182) 

NO Accuracy=93.51% NO Black Box MLP (183) 

NO accuracy=81% NO White Box Logistic Regression (184) 

NO Accuracy=92.8% NO Black Box ANN (185) 

NO 
accuracy = 86.31% 

AUC =82.70 
NO Black Box Deep learning (186) 

NO Accuracy=99.24% NO Black Box 
ANN 
ACO 

(187) 

NO 
Accuracy =83.8% 
sensitivity =96.1% 

NO Black Box NSGA-II-Stacking (188) 
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specificity =79.9% 
f-measure =88.5 

AUC =85.9 

NO 
Accuracy= 86.7% 
Sensitivity= 80% 

Specificity= 93.3% 
NO Black Box ANN (189) 

NO Accuracy=97.33% NO Black Box Fuzzy system (190) 

NO 
Specificity= 95% 
sensitivity =97% 
accuracy=97% 

NO Black Box MLP (191) 

NO AUC=84% YES Black Box DNN (192) 

NO Accuracy=94.74% NO Black Box ABC-DNN (193) 

NO Accuracy=991.38% NO White Box J48 (194) 

NO Accuracy =100% NO Black Box SVM (195) 

NO Accuracy=97.87% NO Black Box DeepNetX2 (196) 

NO AUC=72% NO Black Box RCE-IFE (197) 

NO 
Accuracy: 94.7% 
Sensitivity: 92% 
Specificity: 95% 

NO Black Box Random Forest (198) 

NO 
Accuracy=75.32% 
Sensitivity= 86% 

Specificity= 55.56% 
NO White Box Logistic Regression (199) 

YES Accuracy=75.91% NO Black Box Decision Tree (200) 

YES 
Accuracy= 98.86% 
Sensitivity =98.86% 

NO Black Box Random Forest (201) 

NO 
Accuracy= 98.14% 
Sensitivity =96.97% 
Specificity=95.58% 

NO Black Box ANFIS (202) 

NO Accuracy=79% NO Black Box RBF (203) 

NO Accuracy=80.72% NO Black Box AdaBoost (204) 

NO Accuracy=88% yes Black Box SVM (205) 

NO 

Accuracy=78.83% 
Sensitivity =82.99% 

F1-Measure= 79.01% 
AUC= 86.72% 

NO Black Box GBDT (206) 

NO Accuracy=92.5% NO Black Box PNN (207) 

NO 
Accuracy=80% 

Sensitivity =75% 
Specificity= 81% 

NO Black Box SVM (208) 

NO 
Accuracy=99.4% 
Sensitivity =100% 

NO Black Box Support Vector Classifier (209) 

NO Accuracy=95.42% NO Black Box K-Means (210) 

NO 
Accuracy=82.29% 

Sensitivity= 86.40% 
Specificity= 86.40% 

NO Black Box LapSVM (211) 

NO Accuracy= 87.35% NO Black Box SqueezeNet (212) 
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Sensitivity= 89.29% 

Specificity=85.40% 
AUC= 93.4% 

NO 

Accuracy= 82.4٪ 
Sensitivity= 37.8٪ 
Specificity= 90.2٪ 

AUC= 79.49% 

NO Black Box ANN (213) 

NO 

Accuracy= 93.75% 

Sensitivity= 91.79% 

Specificity=94.8% 

AUC= 97.81% 

NO Black Box XGBoost (214) 

NO 
Sensitivity =52.53 

F1 = 73.59 
NO Black Box Ensemble Learning (215) 

NO 

Accuracy= 92 
Sensitivity= 95 
Specificity= 95 
F1-score= 0.95 
AUC= 99.5% 

NO Black Box CNN (216) 

NO 
Accuracy=97.28% 
F1-Score: 0.97% 

NO Black Box 
Genetic Algorithm 

XGBoost 
(217) 

NO Accuracy=85.9% NO Black Box Random Forest (218) 

NO 
Accuracy= 93.09% 
Sensitivity =91.60% 
F-Measure: 92.25% 

NO Black Box AHDHS-Stacking (219) 

NO Accuracy=94.12% NO Black Box CNN (220) 

NO AUC=84.7% NO Black Box 
XGBoost 

Random Forest LightGBM 
(221) 

NO 
Accuracy= 87.69 
Sensitivity= 44.88 

NO Black Box FNN (222) 
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