LETTER TO THE EDITOR

Iran J Allergy Asthma Immunol December 2022; 21(6):716-717. Doi: 10.18502/ijaai.v21i6.11533

Comment on "Effect of Loaded Glycyrrhizic Acid on PLGA Nano-particle on Treatment of Allergic Asthma"

Zahra Asadi^{1,2}, Asad Vaisi-Raygani², and Faranak Aghaz³

¹ Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran

² Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran

³ Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran

Received: 5 June 2022; Received in revised form: 1 October 2022; Accepted: 10 October 2022

Dear Editor:

We have recently read with great interest the published article in the Iranian Journal of Allergy, Asthma and Immunology by Chen et al. titled: Effect of Loaded Glycyrrhizic Acid on Polylactic-co-glycolic acid (PLGA) Nano-particle on Treatment of Allergic Asthma.¹ Thanks to the authors for sharing their valuable experience in the treatment of allergic asthma with us. Encapsulation of glycyrrhizic acid into PLGA nanoparticles is a great idea to improve its solubility, biodistribution, absorption, and effectiveness. We think that is an efficient drug delivery system, but we'd want to share our few comments on this manuscript:

1. The polydispersity index (PDI) of the fabricated nanoparticles should be measured by the dynamic light scattering (DLS) method. PDI is a basic physicochemical characteristic of nanoparticles that shows their size distribution and homogeneity. A greater PDI value indicates a broader size distribution. On the other hand, the particles with different PDI could have different pharmacokinetic properties in vivo.²

2. It is necessary to determine the entrapment efficiency (%EE) of glycyrrhizic acid using ultracentrifugation followed by ultraviolet spectrophotometry. %EE is the difference between the

Corresponding Author: Faranak Aghaz, MD, PhD;

Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran. Tel: (+98 83) 3427 6489, Fax: (+98 83) 3427 6488, E-mail: faranak_aghaz@yahoo.com drug added amount and the unentrapped (free) drug amount divided by the total drug added, giving an idea of what percent of the drug is entrapped in nanoparticles.³

3. The Fourier transform infrared (FT-IR) of the prepared nanoparticle should be characterized by spectroscopy. FT-IR enables the analysis of the chemical composition and the surface adsorption of nanoparticle functional groups. It also confirms the presence of the nanoparticle loads of glycyrrhizic acid.⁴ Therefore, it has been demonstrated that FT-IR spectroscopy is the criterion necessary for confirming the blank-nanocarrier synthesis and drug loading in nanocarriers.⁵ On the other hand, the synthesis nanoparticles were confirmed by FT-IR spectroscopy, which is not presented in this published paper.

4. It is necessary to evaluate the in vitro cytotoxic activity of the glycyrrhizic acid/PLGA nanoparticles before the nanodrug injection into animals and any in vitro studies as well. Cytotoxicity assay is done using different methods like a colorimetric assay known as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) i. This test determines whether the drug/nanoparticle will cause cell death or damage.⁶

5. The intracellular uptake of glycyrrhizic acid/PLGA nanoparticles should be verified in vitro by flow cytometry. This test determines whether the nanoparticle is capable of cellular internalization and effective for intracellular drug delivery.⁷

Copyright $\ensuremath{\mathbb{C}}$ 2022 Asadi et al. Published by Tehran University of Medical Sciences.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (https://creativecommons.org/licenses/ by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited.

STATEMENT OF ETHICS

This study was letter to the editor.

FUNDING

The authors declare no funding for present study.

CONFLICT OF INTEREST

The authors declare no conflict of interest related to this study.

ACKNOWLEDGEMENTS

This study was supported by the Kermanshah University of Medical Sciences.

REFERENCES

- Chen L, Mehrabi Nasab E, Athari SS. Effect of Loaded Glycyrrhizic Acid on PLGA Nano-particle on Treatment of Allergic Asthma. Iranian journal of allergy, asthma, and immunology. 2022;21(1):65-72.
- Varani M, Campagna G, Bentivoglio V, Serafinelli M, Martini ML, Galli F, et al. Synthesis and Biodistribution of (99m)Tc-Labeled PLGA Nanoparticles by Microfluidic Technique. Pharmaceutics. 2021;13(11):1769.
- Anwer MK, Mohammad M, Ezzeldin E, Fatima F, Alalaiwe A, Iqbal M. Preparation of sustained release apremilast-loaded PLGA nanoparticles: in vitro characterization and in vivo pharmacokinetic study in rats. 2019;14:1587-95.
- Mohammadi G, Fathian-Kolahkaj M, Mohammadi P, Adibkia K, Fattahi A. Preparation, Physicochemical Characterization and Anti-Fungal Evaluation of Amphotericin B-Loaded PLGA-PEG-Galactosamine Nanoparticles. Adv Pharm Bull. 2021;11(2):311-7.
- Paolini L, Federici S, Consoli G, Arceri D, Radeghieri A, Alessandri I, et al. Fourier-transform Infrared (FT-IR) spectroscopy fingerprints subpopulations of extracellular vesicles of different sizes and cellular origin. Journal of extracellular vesicles. 2020;9(1):1741174.

- Martín-Banderas L, Muñoz-Rubio I, Prados J, Álvarez-Fuentes J, Calderón-Montaño JM, López-Lázaro M, et al. In vitro and in vivo evaluation of Δ9tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy. International Journal of Pharmaceutics. 2015;487(1):205-12.
- Bao W, Liu R, Xia G, Wang F, Chen B. Applications of daunorubicin-loaded PLGA-PLL-PEG-Tf nanoparticles in hematologic malignancies: an in vitro and in vivo evaluation. Drug Des Devel Ther. 2019;13:1107-15.