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ABSTRACT 

 

Toll-like receptors (TLRs) play principle roles in recognition of autologous components 

which have been pointed as the danger-associated molecular patterns (DAMP) and microbial 

components which are identified as pathogen associated molecular patterns (PAMP).The 

infiltration of various inflammatory cells such as dendritic cells, lymphocytes (CD4+ T, 

CD8+ T as well as B cells), monocytes and macrophages occur into the central nervous sys-

tem (CNS) during multiple sclerosis (MS) and its animal model named experimental 

autoimmune encephalomyelitis (EAE). The infiltrated leukocytes and residential cells of the 

CNS express several TLRs (especially TLR2) and their expression are elevated in MS and 

EAE. TLR2 recognizes a large variety DAMP and PAMP molecules due to its ability to 

create heterodimers with TLR1, TLR6 and probably TLR10. A wide spectrum of  DAMP 

molecules, including heat shock protein 60 (HSP60), HSP70, high mobility group box 1 

(HMGB1), β-defensin 3, surfactant protein A and D, eosinophil-derived neurotoxin, 

gangliosides, serum amyloid A, hyaluronic acid and biglycan are identified by TLR2, whose 

their expression is increased in MS patients. TLR2 may contribute in the development of MS 

and EAE diseases through the reinforcement of Th1/Th17 cell-related responses, 

downregulation of regulatory T cells, induction of IL-17+ γδ T cells, inhibition of 

oligodendrocyte maturation, induction of poly ADP-ribose polymerase-1 (PARP-1)-

dependent pathway in microglia, macrophages and astrocytes and inhibition of type I 

interferons expression. The contribution of TLR2-related immunopathological responses in 

the MS and EAE pathogenesis and its possible targeting as promising therapeutic potentials 

are considered in this review.   
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INTRODUCTION 

 

Multiple sclerosis (MS) is an autoimmune-mediated 

disease causes the neuronal demyelination and axonal 

injury in the central nervous system (CNS).
1
 At present, 

about 2.5 million patients suffer from MS and women 

were affected by a greater risk than men (about 2/1), 

worldwide.
2,3

 The clinical courses of MS are classified 

as relapsing-remitting (RRMS), primary progressive 

(PPMS), secondary progressive (SPMS) and 

progressive relapsing (PRMS).
4
 The experimental 

model of MS disease has been identified as 

experimental autoimmune encephalomyelitis (EAE) 

which is inducible in a susceptible animal by active  

immunization with myelin-derived antigens, such as 

myelin oligodendrocyte protein (MOG), myelin basic 

protein (MPB) or proteolipid protein (PLP) emulsified 

in a suitable adjuvant.
5-7

 EAE has been introduced as an 

appropriate model to explain the mechanisms of MS as 

well as therapeutic approaching to this disease.
8
 

The autoimmune response against myelin 

constituents in CNS play an essential role in MS 

pathogenesis.
9
Pathologically, the perivascular 

infiltration of immune cells such as dendritic cells 

(DCs), lymphocytes (CD4
+
and CD8

+
T cells as well as 

B cells), monocytes and macrophages happen into the 

CNS during the initial stages of the disease. The 

infiltrated leukocytes contribute to the demyelination, 

astrocytosis and neuronal as well as axonal 

degeneration.
10

 

In MS and EAE, the rupture of the blood-brain 

barrier (BBB) and migration of activated leukocytes 

occur into the CNS.
11

 The DCs migrate across the 

inflamed BBB and trigger the differentiation of myelin 

specific naïve CD4
+
 T lymphocytes into the various 

effector T cell subsets.
9,11

 The demyelination process in 

MS and EAE is directed by the pathogenic forms of 

Th1- and Th17 cells,
9,12

 whereas the regulatory T 

(Treg) cells can protect the human and animals against 

the autoimmune diseases.
9,12 

The microglia as the CNS 

macrophages also participate in the 

immunopathological process of the MS and EAE 

diseases by producing proinflammatory cytokines and 

reactive molecules, for instance nitric oxide and 

reactive oxygen intermediates.
13

 The CD8
+
 cytotoxic T 

lymphocytes (CTLs) may directly cause axonal damage 

by releasing granzyme B and perforin.
3
 Moreover, the 

B cells, as well as γ/δ T-cells, natural killer (NK) cells 

and innate lymphoid cells play a critical role in the 

immunopathological process of MS and EAE 

diseases.
3,14

 

Toll-like receptors (TLRs) are the cell surface-

linked proteins that belong to the pathogen recognition 

receptors (PRR) family in innate immunity. TLRs play 

a fundamental role in recognition of non-microbial 

endogenous ligands that are called danger-associated 

molecular patterns (DAMP) and conserved microbial 

constituents that are identified as pathogen associated 

molecular patterns (PAMP).
15,16

 The intracellular-

originated DAMP molecules, including heat shock 

protein 70 (HSP70), heat shock protein 90 (HSP90), 

high mobility group box 1 (HMGB1) and cellular RNA 

are released  after tissue damage or cell death.
16

 The 

PAMP molecules are originated from infectious agents 

such as lipoproteins, lipopeptides, peptidoglycans, 

lipopolysaccharides (LPS), CpG-motif-containing 

DNA (CpG-DNA), single- and double stranded 

ribonucleic acid.
16,17

 

In total, 13 kinds of TLRs have been specified so 

far, in which TLR1 to TLR9 commonly exist in both 

humans and mice.
16

TLR10 has been exclusively 

designated in humans, whereas TLR11 to TLR13 only 

exist in mice. The microbial-derived PAMP such as 

LPS, lipopeptides, bacterial flagellum, viral-derived 

dsRNA, viral or bacterial-derived ssRNA and CpG-rich 

unmethylated DNA are recognized by TLR4, TLR2-

TLR1 and TLR2-TLR6 heterodimers, TLR5, TLR3, 

TLR7/TLR8 and TLR9, respectively.
18

 Activation of 

TLRs by PAMP or DAMP result in the secretion of the 

pro-inflammatory cytokines and chemokines, which 

trigger the inflammatory reactions.
17,19

 

TLR2 is expressed on the cell membrane of 

monocytes, macrophages, myeloid DCs, endothelial 

cells, epithelial cells and nervous cells, and binds to 

various ligands including bacterial-derived lipoteichoic 

acid, lipopeptides and glycolipids, and fungal-derived 

beta glucan. Furthermore, TLR2 recognize a number of 

endogenous DAMP such as glycosaminoglycan, 

hyaluronan, hyaluronic acid, biglycan, snapin, heat 

shock proteins (such as HSP22, HSP60, HSP70, 

HSP90), high mobility group box protein 1 (HMGB1), 

surfactant protein A and D, eosinophil-derived-

neurotoxin, gangliosides, versican, serum amyloid A 

and β-defensin-3.
20-22

 

TLR2 is structurally expressed as a homodimer and 

heterodimer, in coalition with TLR1, TLR6 or TLR10 

and thus recognizes a large variety of PAMPs.
23

 The 

various types of leukocyte are directly influenced by 
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immunomodulatory impacts of TLR2 ligation such as 

B cells, CD4
+
 and CD8

+
 T cells, γδ T- cells, NK cells, 

neutrophils, basophils and epithelial cells.
24,25

 

It should be noted that the autoimmunity is the 

result of the activation of self-reactive lymphocytes and 

loss of self-immunologic tolerance. However, the 

improper TLR activation induced by self-constituents 

may cause non-infectious inflammation and 

autoimmunity.
16

 In this review, we explain the 

involvement of the TLR2-related immunopathological 

responses in the development of MS and EAE diseases. 

The greater understanding of the TLR2-mediated 

pathways in the pathological mechanisms of MS and 

EAE may provide new insights to design the novel 

therapeutic agents. The targeting of TLR2 as a 

promising therapeutic potential for MS treatment could 

be considered in the future medical investigations.   

 

TLR2-Linked Signaling Pathways 

The first step in TLR2 signal transduction is the 

PAMP and/or DAMP-induced TLR2 homodimerization 

or heterodimerization (with TLR1, TLR6 and probably 

TLR10) that brings the TIR domains in their 

cytoplasmic regions into close adjacency, constructing 

a platform for signaling via TIR domain-containing 

adaptor proteins.
26

Myeloid differentiation primary 

response gene  (MyD88), MyD88 adapter-like 

(MAL)/TIR domain-containing adaptor protein 

(TIRAP), TIR-domain-containing adapter-inducing 

interferon-β (TRIF), TRIF-related adaptor molecule 

(TRAM), and sterile α and armadillomotif containing 

protein (SARM) are the major TIR domain-containing 

proteins contributing in the intracellular transmission of 

signal.
27

 

The TLR2-linked signal transduction principally 

depends on the adaptor proteins MyD88 and 

TIRAP/MAL.
26

 Upon TLR2 ligation, both MyD88 and 

TIRAP/MAL are recruited through TIR–TIR 

interactions to the TLR2/TLR2, TLR2/TLR1, 

TLR2/TLR6 and probably TLR2/TLR10 

heterodimers.
26

 Following this process, MyD88 

connects to interleukin-1 receptor-associated kinase 

(IRAK) complex, which comprises two active kinases 

(IRAK-1 and IRAK-4) and IRAK-2 and IRAK-3 

subunits which are catalytically inactive.
28

 Then the 

IRAK-4 phosphorylation activates IRAK-1 and 

subsequently recruit tumor necrosis factor receptor-

associated factor 6 (TRAF-6) to construct a signaling 

complex of MyD88–IRAKs–TRAF-6 which activates a 

complex containing TGF-β-activated kinase 1 (TAK1), 

TAK1-binding protein 1 (TAB1), TAB2, and TAB3.
29

 

Activation of the TAK1/TAB complex elicits the 

mitogen-activated protein kinases (MAPKs) and the 

inhibitor of NF-κB kinase (IKK) complex.
30

 IKK 

complex is composed of IKKα, IKKβ, and 

IKKγ/NEMO (NF-κB essential modulator).
31

 

Activation of IKK complex results in the 

phosphorylation of NF-κB inhibitor (IκB), which  

cause its ubiquitination and degradation.
32

Therefore, 

the NF-κB is released and translocated into cellular 

nucleus to start gene expression of pro-inflammatory 

parameters including IL-1β, IL-6, IL-8, IL-12, IL-17, 

TNF-α, IFN-γ, inducible nitric oxide synthase (iNOS) 

and ICAM-1.
33

 

In another signal transduction pathway, the MyD88 

is able to trigger the PI3K/AKT-linked signaling 

pathway, which could contribute in the production of 

an anti-inflammatory cytokine IL-10. The activation of 

PI3K/AKT pathway begins after recruitment of MAL 

(also known as TIRAP),whichisaMyD88-like adaptor 

protein.
34

 In addition to the PI3K/AKT-mediatedanti-

inflammatorypathway,TLR2ligationcan also induce 

Suppressor of cytokine signaling(SOCS) proteins 

which suppress signaling process, including MAPKs 

and Janus kinase-signal transducers and activators of 

transcription (JAK–STAT) pathways.
35

 

TLR2-related signaling pathway also results in the 

consumption of IRAK1 and hence suppresses the 

formation of type I IFNs that is directed by other TLRs 

including TLR7 and TLR9. As TLR2 ligation reduces 

the synthesis of type I IFNs through reduction of 

IRAK1,
36

 therefore, the TLR2-transmitted signal may 

interfere with signal transduction from other PRRs and 

following it may be affected by signals that are 

triggered from other immune-related receptors.    

 

Expression of TLR2 and Its Ligands in CNS 

The recognition of both exogenous PAMP and 

endogenous DAMP by TLRs may cause the stimulation 

of autoreactive lymphocytes in autoimmune diseases, 

such as MS. Indeed, a number of TLRs was linked with 

the development and progression of MS.
37

 In MS 

disease, various kinds of leukocytes including 

monocytes, DCs, NK cells, lymphocytes (CD4
+
 T, 

CD8
+
 T and B cells) migrate into the CNS and cause 

myelin destruction, axon injury and neuronal cell 

death.
38

 The residential cells and the infiltrated 

leukocytes into the CNS express a number of TLRs 
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(such as TLR2) and their expression is enhanced in MS 

disease. Although, the raised TLRs expression may 

potentially involve in the pathogenesis of disease,  

they were also implicated in the neuroprotection 

process.
17,39

 There are many evidences indicating the 

TLR ligands are able to induce CNS inflammation via 

the production of cytokines, nitric oxide and 

chemokines. However TLRs function in some 

conditions may be neuroprotective, if trigger in a 

suitable manner.
40

 

In the CNS, TLR2 is expressed on the endothelial 

cells, microglia, astrocytes, oligodendrocytes and on 

infiltrated cells.
17,41

 TLR2 plays a central role in the 

activation of glial cells and neuroinflammation, 

representing the importance of TLR2 in the 

pathogenesis of some neurological disorders.
21

 TLR2 

has been specified as a new player in CNS-related 

diseases such asMS,42,43
Parkinson's disease.

44
 and 

Alzheimer's disease.
45

 In particular, the experimental 

and genetic evidences represent that TLR2 play a 

critical role in the MS pathogenesis as a result of its 

contribution in the neuroinflammatory responses that 

may lead to the death of neurons and tissue injury.
21,39

 

In addition, TLR2 is expressed on oligodendrocyte 

progenitor cells (OPC) and its activation suppresses 

OPC differentiation and myelination.17
 

Moreover, the MS patients exhibit high expression 

of TLR2 and its ligands in their mononuclear cells and 

in demyelinating regions in CNS.
43,46,47

 Further, 

elevated levels of soluble TLR2 were indicated in the 

serum samples obtained from MS patients.
48

The high 

expression of TLR2 was also reported in the peripheral 

neutrophils in patients with RRMS.
49

 The count of 

microglia and macrophages expressing the HMGB1, an 

endogenous TLR2 ligand, is increased in the RRMS.
50

 

Moreover, the elevated expression of HMGB1 was 

indicated in the peripheral blood mononuclear cells 

(PBMCs) and in the serum of RRMS and SPMS 

patients.
51,52

 The elevated expression of HSP70,
53,54

 

versican,
55

 serum amyloidA,
56

 gangliosides
57

 and 

biglycan
58

 were also demonstrated in the PBMCs 

and/or in the CNS lesions of MS patients. Different 

DAMP are derived from various neuronal 

compartments following damage to the neurons
59 

(Figure 1). 

The contribution of the TLR2 was also reported in 

the EAE pathogenesis as an experimental model of 

MS.
60

 Indeed, the TLR2-deficient mice exhibit a mild 

form of EAE. The low infiltration of T cell and 

microglia/macrophage also occur in the CNS of TLR2-

deficient mice.
61

 Even following the passive adoptive 

transfer of autoimmuneT cells, TLR2-deficient mice 

display the low infiltration of CD4
+
 T cells in the brain 

as well as a milder EAE form.
61

 The HMGB1 has been 

also found in damaged regions in EAE mice and its 

amounts correlate with inflammation scores.
50

 

Experimentally, in a mouse model of cuprizone-

induced demyelination, it was found that the TLR2 

expression was enhanced in the CNS in an area-related 

manner.
62

 The activation of microglia and astrocytes 

was also attenuated in TLR2-deficient mice in an area-

related manner.
62

 

As mentioned, ligand-induced TLR2 dimerization 

recruits the MyD88 that in turn activates transcription 

factors, such as NF-κB and MAPKs, and finally lead to 

the production of pro-inflammatory cytokines.33
 The 

members of downstream of kinase (Dok) family act as 

modulators of protein tyrosine kinase(PTK) signaling.
15

 

It has been indicated that TLR2-related NF-κB 

activation and IL-6 secretion was exacerbated in 

astrocytes transfected withDok1-and Dok2-

specificsmall interfering RNA (siRNA), representing 

that both Dok proteins attenuate the TLR2-related 

inflammatory signaling in astrocytes.
63

 In contrast, 

silencing of the Dok1 expression diminish the TLR2-

induced NF-κB activation and IL-6 production in 

microglia, while Dok2-specific siRNA unable to affect 

TLR2-related signaling and subsequent cytokine 

production in microglia.
63

 Therefore, the TLR2-related 

signaling is controlled by a number of regulating 

molecules such as Dok1 and Dok2. The regulating 

molecules may perform distinct roles in different CNS 

resident cells. Hence. Dok1 and Dok2 differentially 

regulate TLR2-related signaling pathways in 

microglia and astrocytes. Therefore, Dok1 and Dok2 

may be novel therapeutic targets in diseases that the 

microglial and astrocytic activation trigger excessive 

inflammatory reactions. 

 

TLR2-Related Immunopathological Responses in 

MS and EAE 

TLR2 Acts as a Linker between Infections and 

MS/EAE 

There are accumulating evidences regarding a 

correlation between the several viral infections, such as 

EBV (64) and human herpes virus 6
22

 and a number of 

bacterial infections, such as Chlamydia pneumoniae
65
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Figure 1. A schematic figure showing the involvement of the Toll-like receptor 2 (TLR2)-related pathways in the pathogenesis 

of multiple sclerosis (MS). Some central nervous system (CNS)-derived components [including high mobility group box 

protein 1 (HMGB1), heat shock protein 70 (HSP70), versican, gangliosides, biglycan, hyaluronan and serum amyloid A] and 

a number of pathogen-derived molecules (such as peptidoglycan) are recognized by TLR2/TLR2 homodimer and 

TLR2/TLR1, TLR2/TLR6 and TLR2/TLR10 heterodimers which are expressed by a number of infiltrated leukocytes and 

residential cells within the CNS. The TLR2-related signaling in lymphoid and non-lymphoid cells result in the induction of 

inflammatory responses during MS. TLR2 may contribute in the pathogenesis of MS through linking of infection with the 

MS, upregulation of Th1/Th17 cells, downregulation of regulatory T (Treg) cells, induction of interleukin-17 positive γδ T 

cells (IL-17+ γδ T cells), inhibition of oligodendrocyte maturation, induction a Poly ADP-ribose polymerase-1 (PARP1)-

dependent pathway in microglia, macrophages and astrocytes, induction of inducible nitric oxide synthase (iNOS), inhibition 

of type I interferons expression and induction of the pro-inflammatory cytokines and chemokines. 
 

 
 

 

 

 
 

and group A streptococcus
66

 with the development of 

MS. Exacerbation of MS following the active 

immunization with some vaccines, such as 

pneumococcal vaccine was also reported.
67

 The 

infections may influence the susceptibility and the 

clinical patterns of MS. The bacterial infections 

frequently occur in MS patients and the relapsing form 

of MS has been reported during these infections.
68,69

 

Monocyte-derived dendritic cells (MDDCs) from MS 

patients with bacterial infections express more amounts 

of HLA-DR and costimulatory molecules than non-

infected patients and produce higher amounts of IL-12, 

IL-17 and INF-γ.
70

 Therefore, the microbial products 

can influence the MDDCs ability in order to increase 

autoreactive T-cell activation, which may be a reason 

for MS relapsing during bacterial infections. Some 

evidences indicate that TLR2 may operate as a linker 

between infectious agents and MS. The presence of 

several bacterial-derived TLR2 ligands were 

demonstrated in the brain and in the CSF of MS 

patients. For example, the peptidoglycan, a major 

component of the gram-positive bacterial cell walls, 

was observed in the brain of MS patients and within 

activated macrophage/DCs that express high amounts 

of  surface co-stimulatory molecules (CD80, CD86 and 

CD40) which secrete high concentrations of pro-

inflammatory cytokines such as IL-1α, IL-6, IL-12, 

TNF-α and INF-γ (71). The induction of TLR2 during 

infection may cause pathogen clearance by enhancing 

Th1/Th17 cell-related responses and decreasing Treg 
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cell activity that may essentially contribute in the 

autoimmune-mediated tissue damage.
42

 

Interestingly, the bacterial peptidoglycan is able to 

contribute in the inflammatory process of EAE diseases 

in the absence an active bacterial infection.
72,73

 

Peptidoglycan may be applicable as a replacement of 

heat killed Mycobacteria tuberculosis in complete 

Freund's adjuvant(CFA) for the EAE induction.
73

 

Moreover, the persistence of TLR2 ligands in the CNS 

was associated with low local expression of major 

peptidoglycan-degrading enzymes, including lysozyme 

and N-acetylmuramyl-l-alanine amidase.
72

 The 

infection with Streptococcus pneumoniae worse the 

EAE severity in a TLR2-linked process.
74

 Similarly, 

phosphorylated dihydroceramides from the common 

human oral bacterium Porphyromonas gingivalis 

induce IL-6 production from DCs, decrease spinal cord 

Treg cells and enhance the EAE severity in a TLR2-

related manner.
75

 These findings represent that the 

TLR2 induction by infectious stimuli can exacerbate 

MS, through down-regulating of Treg cell function. 

Therefore, it seems that the treatment of the MS-related 

infections may ameliorate the disease severity and 

diminish its clinical symptoms.  

 

TLR2 Mediates Reinforcement of the Th1/Th17 Cell 

Responses 

After the specific antigenic stimulation, different 

effector CD4
+ 

T cell subsets are differentiated from 

naïve CD4
+
 T lymphocytes such as Th1, Th2, Th17 or 

Treg cells, which secrete exclusive cytokine patterns.
76

 

The differentiation of the effector Th1 lymphocytes 

from naïve CD4
+
 T cells is regulated by cytokines IFN-

γ and IL-12, which are synthesized by the DCs and NK 

cells, respectively.
77

 Th1 cells release IFN-γ, which 

triggers the cell-mediated immunity and play prominent 

roles in defense against intracellular pathogens, anti-

tumor immunity and development of some autoimmune 

disorders.
78

 T-bet (T box expressed in T cells) has been 

identified as a principle transcription factor of Th1 

cells.
77,79

 

The differentiation of Th17 cells from naïve CD4
+
 

T lymphocytes is induced by some cytokines 

(especially IL-6 and TGF-β) and transcription factors 

retinoic acid receptor-related orphan receptors (RORγt 

and RORα).
79-81

Th17 cells secrete a number of 

cytokines, especially IL-17 (also called IL-17A), IL-

17F, IL-21, IL-22, TNF-α and GM-CSF.
80,82

Th17 cells 

perform a major role in the defence against the various 

extracellular pathogens and involve in the inflammation 

process and autoimmune disorders.
81,83

 

It should be noted that both MS and EAE are 

Th1⁄Th17 cell-mediated autoimmune diseases.
9,84,85

 The 

pathogenic autoreactive Th1- and Th17 cells are 

infiltrated into the CNS of MS patients and EAE 

mice.
11,86

The Th1- and Th17 cells play a 

complementary function in the immunopathological 

process of MS and EAE.
84-86

 Th1 cells conduct the 

macrophage accumulation in the spinal cord, while 

Th17 cells increase the neutrophils aggregation, 

especially in the brain.
86,87

 The deficient mice in either 

RORγt or T-bet were resistant to EAE.
88,89

 

Th1 cells perform a central role in promoting of the 

MS immunopathology by secreting IFN-γ.
90

 The 

myelin basic protein (MPB)-specific Th cells isolated 

from MS patients mainly produce Th1 type cytokines, 

such as IL-2 and IFN-γ.
11,91

 Moreover, the elevated 

IFN-γ and TNF-α levels in MS patients confirm that 

Th1 cells are pathogenic.
92,93

 Treatment of MS patients 

with IFN-γ exacerbate the disease, whereas 

administration of monoclonal neutralizing antibodies 

against IFN-γ prevents MS attacks.
11,91

 

The contribution of Th17 cells in 

immunopathogenesis of MS may perform through the 

recruitment of neutrophils into the CNS, induction of 

the reactive oxygen species (ROS) generation in brain 

endothelial cells, stimulation of microglia cells in order 

to produce the pro-inflammatory parameters, and the 

stimulation of astrocytes for producing CXC 

chemokines.
84,85

 Some Th17 cell-derived cytokines 

(such as TNF-α) trigger the matrix metalloproteinases 

expression which play a critical role in the degeneration 

of brain blood barrier (BBB).
94,95

 The high expression 

of matrix metalloproteinases (including MMP-2, 

MMP3, MMP-7 and MMP-9) has been shown in the 

CNS of patients with MS.
95

 The increased formation of 

a Th17 cell-related chemokine (CCL20) and 

diminished production of a Th2/Treg cell-related 

chemokine CCL22 were also indicated in MS 

patients.
96,97

 

TLR2 Ligation also causes the expression of IL-1, 

IL-6 and IL-12, which play a principle role in the 

differentiation of naïve CD4
+
 T lymphocytes into Th1 

and Th17 cells.
17

The endogenous TLR2 ligands may 

have an increasing impact on the differentiation, 

function and maintenance of Th1- and Th17 cells. 

TLR2 stimulation promotes the Th17 cell 
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differentiation and proliferation, which can lead to the 

more Th17 cell-related cytokine production.
98

 

It has been indicated that the expression of TLR2, 

TLR4 and TLR9 on CD4
+
 and CD8

+
 T cells in patients 

with MS were higher than the healthy individuals. The 

stimulation of purified CD4+ and CD8+ T cells from 

MS patients with a TLR2(Pam3Csk4) cause the higher 

formation of pro-inflammatory cytokines compared to 

the activation with TLR4 or TLR9 ligands.
99

 Further, 

the amounts of IL-6, IFN-γ, IL-17 and GM-CSF 

induced by Pam3Csk4-activated CD4
+
 T cells were 

directly associated with the severity of disease. A 

similar correlation was observed between the amounts 

of IL-17 production by Pam3Csk4-induced CD8
+
 T 

cells, and clinical parameters.
99

 

As mentioned previously, the elevated expression of 

HMGB1 was demonstrated in the PBMCs of RRMS 

and SPMS patients.
51

 HMGB1 increases the 

polarization of Th17 cells via up-regulation of the 

production of TLR2 and IL-23 in monocytes from 

rheumatoid arthritis patients.
100

 Furthermore, induction 

of TLR2 by HMGB1 in monocytes from patients with 

ischemic stroke increase the Th17 cell-related 

response.
101

 TLR2 also promotes Th17 cell-related 

responses in hepatitis B virus infection.
102

 Similar 

events may happen in patients with MS (Figure 1). 

Using an EAE model, it was demonstrated that 

TLR2 potentiate the Th17 cell-mediated 

autoimmunity and the loss of TLR2 in CD4
+
 T cells 

can markedly ameliorate the EAE.
61

 Moreover, TLR2 

stimulation increases EAE development and promotes 

the clinical symptoms. Further, TLR2-deficient mice 

display low Th17 cell-related responses and a reduction 

in the EAE symptoms.
61

In another study on a murine 

model, it was also indicated that the TLR2 signaling 

promotes the IFN-γ, IL-6 and IL-17 secretion, causing 

the differentiation of Th1- and Th17 cells that may lead 

to EAE development.
103

 In EAE, the TLR2-mediated 

signaling was associated with a low number of central 

CD62L
+ 

Treg cells and high infiltration of IL17-

producing CD4
+
 T cells into the CNS. Moreover, 

TLR2-deficient mice exhibit fewer IL17-secreting 

CD4
+
 T cells and high proportions of central CD62L

+
 

Treg cells in the CNS.
104

 

 

TLR2 Mediates Impairment of Treg Cell Responses  

Treg cells constitute approximately 5–15% of the 

peripheral CD4
+
 T cells sort into two major subsets, 

including natural Treg (nTreg) and inducible Treg 

(iTreg) cells. The nTreg subset is developed from 

precursor cells in the thymus whereas iTreg cells arise 

from naïve CD4
+
 T lymphocytes in the secondary 

lymphoid organs following antigenic recognition in the 

presence of IL-2 and TGF-β.
105,106

 The Treg cell 

activity was controlled by a major transcription factor 

FOXP3, and the mutations of the foxp3 gene are able to 

impair the Treg cell activity, therefore it can be led to 

the development of various types of autoimmune 

disorders.
106,109

 

The Treg cell-related immunosuppressive cytokines 

were identified as IL-10, TGF-β and IL-35, which play 

an essential role in inhibiting CNS-related autoimmune 

diseases.
17,107,108

 Recent investigations reveal that he 

number and/or function of Th17 cells were increased, 

while the frequency and/or immunosuppressive 

function of Treg cells were diminished in MS 

patients,
83,106

 representing that the modification of the 

Th17/Treg cell balance contributes to the development 

of disease. Indeed, the separated Treg cells from MS 

patients display low inhibitory effects on T cell 

expansion following the specific antigenic stimulation 

with myelin-derived components. Moreover, Treg cells 

isolated in relapse phase of the MS exhibit weak 

suppressor function.
109

 The functional defects in Treg 

cell function cause autoimmune response to neuronal 

myelin due to the activation of the self-reactive T 

cells.
109

 

It was reported that the TLR2 has modulatory 

effects on the activity of human naïve and memory 

Treg cells. The ligation of TLR2 on myeloid dendritic 

cells (mDCs) results in the IL-23 synthesis that 

enhances the secretion of IL-17A from CD4
+
 T cells.

110
 

The TLR2 stimulation with Pam3Cys reduces the 

immunosuppressive functions of Treg cells and induces 

a deviation fromTreg-toTh17cell-related responses in 

PBMCs isolated from healthy individuals.42 It was 

demonstrated that the Treg cells from patients with 

RRMS express higher amounts of TLR2 in comparison 

with healthy subjects. Naive and effector Treg cells 

from patients with RRMS are more vulnerable to 

TLR2-mediated inhibition of immunosuppressive 

activity and to Th17 cell development than in healthy 

individuals.
42

 

Indeed, the elevated TLR2 expression by T cells 

from MS patients represent that these individuals may 

be more vulnerable than healthy individuals to the 

damping effects of microbial constituents on Treg 

cells.
42

 These findings represent that the higher TLR2 
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expression may be an important account for the low 

Treg cell activity in MS patients. The TLR2 ligation 

causes the deviation of the Treg/Th17 balance toward 

Th17 cell-related responses in patients with RRMS 

patients. Indeed, the TLR2 induction results in the IL-6 

formation by CD4
+
 T cells in RRMS patients.

42
 In the 

presence of TGF-β, IL-6 promotes the generation of 

Th17 cell while preventing Treg cell differentiation, 

thereby regulating the balance between Th17- and Treg 

cells.
83

 In particular, IL-6 is required for TLR2-induced 

inhibition of Treg cell-relate immunosuppressive 

activity as neutralization of IL-6 also abolish the TLR2-

induced formation of IL-17 and IL-22 in human Treg 

cells.
111

 In addition to its direct influences on Treg 

cells, IL-6 cause the unresponsiveness of effector T 

cells to Treg cell-mediated inhibition in MS patients.
112

 

The effect of TLR2 on Treg cell function is mediated 

through IL-6, therefore, the IL-6 neutralization may 

have therapeutic potential in MS as indicated in other 

immune-mediated diseases, including rheumatoid 

arthritis and a MS-related neuroinflammatory disease, 

neuromyelitisoptica.
113,114

 

 

TLR2 Mediates Development of IL-17
+
 γδ T Cells  

The IL-17
+
 γδ T cells and microglia, the major 

residing immune cells in the brain, are involved in 

several CNS-related disorders such as MS and EAE 

diseases.
115,116

 There are evidences supporting that 

TLR2 may involve in the EAE development trough 

induction of the IL-17
+
 γδ T cells. Similar TLR2-

mediated IL-17
+
 γδ T induction may occur in MS.   

Elevated number of IL-17
+
 γδ T cells was indicated 

in the brain of EAE.
117

In EAE, a pathogenic role of IL-

17
+
 γδ T cells was reported in the beginning of the 

disease.
115,118

The γδ T cell-deficient mice display an 

attenuated form of EAE disease and a delay in the 

appearance of symptoms.
115

 Further, γδ T cells-derived 

IL-17 increases the secretion of IL-17 from CD4
+
 T 

cells.
117

 These observations represent that IL-17
+
 γδ T 

cells involve in the pathogenesis of EAE through 

promotion of the harmful Th17 cell-related responses. 

It has also indicated that TLR2-deficient γδ T cells 

display diminished IL-17 production in response to 

 IL-23.
61

 

It was demonstrated that supernatants from mouse 

microglia stimulated with a TLR2 agonist 

(Pam3CysSK4) induce naïve γδ T cells to secrete IL-

17. The stimulation of mouse microglia via a TLR2 

agonist and the subsequent secretion of IL-23 and IL-

1β play a principle role in development of IL-17
+
 γδ T 

cells.
116

The IL-17
+
 γδ T cells differentiated by 

supernatants from TLR2-activated microglia also 

display neurotoxic activity in vitro. The IL-17
+
γδ T 

cell-mediated neurotoxicity require a direct cell-cell 

joining between effector T cells and neuronal cells.
116

 

These observations represent that microglia activation 

through TLR2 play an important role in polarization of 

γδ T cells towards neurotoxic IL-17
+
 γδ T cells (Figure 

1). 

 

TLR2 Mediates Inhibition of Oligodendrocyte 

Maturation and Remyelination  

The myelin is a substance that covers the axon of 

some neurons, enabling quick nerve conduction and 

increase axon integrity. The loss of myelin is named 

demyelination, which is a hallmark of a number of 

CNS-related disorders such as MS.
119

 The myelin 

synthesis is done by oligodendrocytes that are 

differentiated from oligodendrocyte progenitor cells 

(OPC). After inflammatory injury, the remyelination is 

mediated byOPC that migrate and differentiate into 

oligodendrocytes.
120

 

Hyaluronicacid (also called hyaluronan) is an 

anionic glycosaminoglycan polymer, which 

accumulates in demyelinated lesions in the brain white 

matter of MS patients. Demyelination areas in the CNS 

of MS patients and EAE mice also show high levels of 

hyaluronan (HA) accumulation, which is related to the 

impairment of remyelination.
121-123

Therefore, the 

impaired hyaluronan-mediated remyelination is an 

important phenomenon that occurs in MS patients and 

EAE mice.  

HA is once digested by the hyaluronidases 

expressed by OPC, inhibit the maturation of OPC and 

remyelination via binding to TLR2.
17,123

 It has been 

suggested that high molecular weight fragment of HA 

(HMW-HA) may be split by hyaluronidases into 

smaller components and then stimulate TLR2. 

Therefore, HA binds to TLR2, which also is known as 

a hyaluronan receptor and is predominantly expressed 

on the surface of astrocytes and OPC.
121

 Thus, 

inhibition of the remyelination in MS is mediated 

through HA, partial HA degradation and TLR2 ligation 

on oligodendrocytes.
123

 HA is involved in the 

regulation of remyelination by binding to TLR2,  

which inhibits the maturation of OPC and 

remyelination.
121

 HA suppresses the maturation of  
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the oligodendrocyte in vitro, in a dose dependent 

manner.
121

 

The HMW-HA suppresses remyelination in a 

murine model of lysolecithin-induced demyelination, 

however, the TLR2 null mice exhibit more rapid and 

efficient remyelination.17.
17

 Local micro-injection of 

zymosan (a TLR2 activator) into the rat spinal cord 

also elicits focal demyelination and prevents OPC 

proliferation, differentiation and remyelination.
124

 

These findings indicate that the agonists of TLR2 

inhibit oligodendrocyte maturation, representing a 

TLR2-dependent inhibitory effect on oligodendrocyte 

maturation. In murine models, it was demonstrated that 

neutralizing antibodies to TLR2 block the effects of 

HA on oligodendrocyte maturation.
125

 Therefore, 

inhibition of TLR2 may confer neuroprotection in brain 

injury.  

 

TLR2 Mediates a PARP-1-Dependent Pathway in 

Microglia, Macrophages and Astrocytes 

Poly ADP-ribosylation (PARylation) is one of the 

basic modifications of proteins, as polymers of ADP-

ribose is attached to the glutamic acid, aspartic acid or 

lysine residues in the target proteins.
126

 Poly ADP-

ribose polymerase-1 (PARP-1) catalyzes the 

PARylation of some proteins such as histones, 

topoisomerases and DNA helicases resulting in the 

relaxation of the chromatin composition, protein-

protein interaction and DNA-protein binding, therefore, 

leading to gene expression.
126

 High PARP-1 activity 

was observed in the monocytes from patients with 

SPMS.
60

 PARP-1-related pathway may contribute in 

the induction of inflammatory responses by promoting 

the expression of pro-inflammatory cytokines, adhesion 

molecules and the enzymes belonging to the oxidation-

reduction system.
126,127

 Therefore, PARP-1 may 

potentially play an essential role in the pathogenesis of 

inflammatory diseases.  

In the CNS, TLR2 may contribute in the 

neuroinflammation through a PARP-1-associated 

pathway as indicated in a progressive EAE 

model.
60

Higher serum concentrations of 15-α-

hydroxicholestene (15-HC) were observed in patients 

with SPMS and in mice with secondary progressive 

EAE. The administration of 15-HC worse the EAE 

severity via a PARP-1-and TLR2-dependent 

process.
60

15-HC activate microglia, macrophages and 

astrocytes, and enhance the expression of TNF-α, iNOS 

and CCL2 in CNS-infiltrating monocytes/macrophages, 

through a pathway involving TLR2 and PARP-1.
60

 The 

inhibition of PARP-1 prevents the progression of 

EAE.
60

 Experimentally, it has been demonstrated that 

PARP-1 or PARP-2inhibitors reduce the migration of 

DCs into CNS, suppress the encephalitogenic response 

and reduce the infiltration of the Th1 and Th17 cell in 

the CNS during EAE.
128,129

 Thus, theTLR2-PARP-1 

pathway may be a potential new therapeutic target in 

MS.   

 

TLR2 Mediates the Inhibition of Type I Interferons 

Production 

It was demonstrated that the production of type I 

interferons (IFNs) was impaired in patients with MS.
130

 

The recombinant IFN-β is an effective first-line therapy 

against MS.
131

 IFN-β inhibitsCD4
+
naïveT cell 

differentiation into Th1/Th17 cells, suppresses the 

secretion of the Th17 cell-polarizing cytokines IL-1β 

and IL-23 by human DCs, stimulates Th2 cell-

polarizing cytokines, limits leukocyte migration across 

the BBB and increases neuronal survival.
131,131

 

In humans, DCs were classified into two major 

subsets, including plasmacytoid dendritic cells (pDCs) 

and myeloid dendritic cells (mDCs). The pDCs quickly 

release type I IFNs after induction through binding of 

pathogen-derived nucleic acids to TLR7 and TLR9.
131

 

It was showed, that pDCs are composed of two 

different subsets.
132

 Type 1 pDCs (pDC1), expressing 

high extent of CD123, low extent of CD86 and TLR2, 

are the major producers of IFN-α and are the inducers 

of IL-10-secreting Treg cells. On the other hand, type 2 

pDCs (pDC2) expressing low extent of CD123, and 

high extent of CD86 and TLR2, are the major sources 

of IL-6 and TNF-α that play a prominent role in the 

differentiation of naïve T cells toward Th17 cells.
133

 

Interestingly, the ratio of pDC1/pDC2 in MS patients is 

deviated toward pDC2 as compared with healthy 

individuals, representing a more susceptibility to 

develop Th17 cell-related inflammatory responses in 

these individuals.
131,132

 IFN-β treatment restores the 

aforementioned imbalance in the pDC1/pDC2 ratio in 

MS patients and IFN-β-induced changes in DCs-

derived cytokines suppress the differentiation of Th17 

cells.
131

 

Mice with deficient in IFN-β, IFNs receptor or its 

downstream related signaling molecules also display an 

increased susceptibility to EAE, indicating that 

defective endogenous IFN-β production or its-related 

signaling leads to a higher vulnerability for EAE.
134
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The TLR2-related molecular mechanisms, which are 

responsible for the reducing type I IFNs production, 

may be performed through depletion of a signaling 

factor IRAK1. IRAK1 is an essential factor for TLRs-

induced type I IFN expression.
135

 It was indicated that 

signal transmission from TLR2 results in the 

reduction of IRAK1 and therefore suppresses the 

expression of type I IFNs directed by other TLRs such 

as TLR7 and TLR9. The results of a study revealed 

that the levels of IRAK1 were reduced quickly after 

treatment with TLR2 agonist.
36

It seems that TLR2 

ligation down-regulates the formation of type I IFNs 

via reduction of IRAK1 which may play a critical role 

in the development of MS (Figure 1).  

 

Protective Role of TLR2 in MS  

There are many investigations regarding the 

contribution of the TLR2 in the pathogenesis of MS, 

however, the results of a number of studies suggest a 

protective role for TLR2 against MS. It has been 

reported that the serum levels of Lipid 654 [(L654), a 

microbiome-derived molecule, which acts as a TLR2 

ligand] in MS patients was lower than healthy 

individuals.  

Moreover, the formation of the small heat shock 

protein alpha B-crystallin (HSPB5) is enhanced by 

stress-exposed oligodendrocytes in MS patients. The 

HSPB5 levels may increase up to 20 fold during MS 

disease.
136

HSPB5 prevents neuronal and glial cell 

apoptosis, diminishes inflammation, decreases tissue 

damages and enhances recovery in a number of 

animal models of neuroinflammatory disorders.
136,137

 

HSPB5 exerts its beneficial effects in part through the 

induction TLR2-mediated anti-inflammatory, 

neuroprotective and tolerogenic responses in 

microglia and macrophages.
137

 HSPB5 may induce the 

expression of IL-10, indoleamine-2,3-dioxygenase-1 

and TGF-β, strongly represent the induction of anti-

inflammatory responses through a TLR2-mediated 

process.
137

 This protection terminates by IFN-γ, which 

is produced within the CNS during inflammatory 

demyelinating diseases.
138

 It was also indicated that 

the neuroprotective effects of HSPB5 might perform 

through the induction of immune-modulating enzyme 

cyclooxygenase-2 (COX-2) in microglia.
139

 

Moreover, the TLR2 expression on B cells and 

DCs is increased in helminth-infected MS patients, 

who display better clinical symptoms than uninfected 

patients.
140

 This improvement was associated with 

Treg cell induction and increased levels of TGF-β and 

IL-10 and decreased levels of IFN-γ, IL-12, and IL-

17.
140

 The induction of TLR2 on human APC such as 

DCs and B cells by helminths regulates their cytokine 

profile toward an anti-inflammatory response.  

H. pylori also induces powerful Treg cell 

responses and weak Th1 cell responses through TLR2 

induction.
15

The H. pylori-induced activation of Treg 

cells downregulate inflammatory responses and 

contribute to the bacterium persistence in 

asymptomatic H. pylori-infected individuals.
15,141

 

Therefore, H. pylori infection has been also 

considered potentially protective against MS.
142,143

 

There are also evidences showing that the TLR2 

stimulation induces Th2 cell-linked responses. The 

results from a number of investigations indicating that 

Th2 cells may play a protective role against MS. 

Therefore, it has been also postulated that TLR2 

induction may be protective against MS through 

recruitment of Th2 cells.
144

 The zymosan as a TLR2 

ligand may also reduce the severity of MS by 

inducing peripheral blood DCs from MS patients to 

produce IL-10, which suppresses IL-23 and IL-1β 

secretion.
17

 

Intestinal commensal bacteria also confer 

protection against CNS demyelination and 

inflammation during EAE through a TLR2-mediated 

pathway.
145

 Further, the administration of low doses 

of TLR2 ligands (including Pam2CSK4and L654) in a 

model of EAE induces TLR2-related tolerance and 

attenuates disease. The EAE amelioration was related 

with reduced macrophage activation and diminished 

Th17 cells within the CNS, and elevation in splenic 

Treg cells.
146

Experimentally, it has also been 

indicated that the stimulation of microglia with a 

TLR2 agonist, Pam2CSK4, is neuroprotective due to 

the induction of alternative (M2 type) microglial 

activation after laser-induced spinal cord injury.
147

 It 

was also indicated that stimulation of microglia using 

TLR2, TLR4, and TLR9 agonists result in the 

production of anti-inflammatory cytokine IL-10.
148

 

The reasons for aforementioned TLR2-related 

plasticity in MS and EAE diseases remain to be 

clarified in future investigations. A considerable 

plasticity reported in the TLR2-associated recognition 

and signaling pathways, may be due to the variations 

in the composition of the PAMP molecules that act as 

TLR2 ligands. For instance, upon stimulation with 

staphylococcal-derived peptidoglycan, PBMCs 
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produce IL-10 via a TLR2-dependent mechanism that 

reduce the T cell response to staphylococcal-related 

superantigens.
149

 Additionally, LPS from some 

bacterial species induces inflammatory responses via 

a TLR2-mediated mechanism, while the LPS 

from other species does not induce pro-inflammatory 

cytokine expression.
22

 Furthermore, the expression of 

some innate immunity-related receptors, including 

CD14 and CD36 may interfere with the TLR2-related 

signaling pathways. The expression of these 

molecules is essential for the induction of TLR2-

related inflammatory responses, but is not necessary 

for the production of anti-inflammatory cytokine IL-

10.
150

  

The signals originating from other PRRs may interfere 

with the TLR2-mediated inflammatory reactions in an 

agonistic or antagonistic process. Collectively, the 

type, dose and composition of PAMP or DAMP, the 

type of cell expressing TLR2, signal coming from 

other PRR, the presence of other inflammatory 

mediators in the microenvironment and the TLR2 

gene polymorphisms may influence the nature and 

magnitude of TLR2-related responses.   

 

The Targeting of TLR2 as APotential Therapeutic 

Approach of MS 

The evidences provided here indicate a pathologic 

or protective role for TLR2 during MS disease, 

however, the evidences regarding the pathologic role 

of receptor are clearly more than of its protective role. 

Therefore, TLR2 may be a favorable target for the 

control of inflammation in MS disease, although it 

seems much time has remained until that time. It has 

indicated that in vitro culture of monocyte with 

glatiramer acetate, an immunomodulating approved 

drug for treatment of MS, suppresses the TLR2-

induced cytokine production such as TNF‐α.
151

 

The TLRs-related responses may be modulated in 

three main areas including intervention in the ligand-

TLR interaction, targeting of downstream signaling 

molecules or regulating the receptor expression.  

Structurally, the extracellular domain of the TLRs 

contains leucine rich repeat (LRR), which may be 

considered as a target of agonist or antagonist 

drugs.
152

 Therefore, the regulation of TLR2-associated 

immune responses by using specific agonists or 

antagonists may lead to the reduction of the 

undesirable side effects or reinforcement of the 

desirable beneficial effects. It should be noted that 

there are some controversies regarding the induction 

of TLR2 on the effector T cell functions. It was 

reported that TLR2 agonists induce the expansion of 

the both CD4
+
 Treg and CD8

+
 Treg lymphocytes in 

PBMCs isolated from asthmatic patients during 

immunotherapy program.
153

 On the other hand, it was 

indicated that TLR2 ligation with Pam3CSK4 (a 

synthetic triacylated lipopeptide that acts as a TLR2 

agonist) reduces the suppressive functions of Treg 

cells.
111

 However, the immunomodulatory properties 

of Pam3CSK4 were indicated on the cytokine 

secretion by lymphocyte collected from patients with 

infection or inflammatory diseases.
154,155

 The reasons 

for these controversies remain to be clear in more 

studies. The staphylococcal superantigen-like protein 

3 (as an example of TLR2 antagonist) inhibits TLR2-

related immune responses via blocking of ligand 

binding and preventing TLR2-related downstream 

signaling.
156

 The therapeutic potential of TLR2 

agonists or antagonists concerning MS disease needs 

to be considered in future investigations. 

There is no licensed specific TLR2 inhibitor for 

using in human, yet. A small molecule 

C16H15NO4 (C29) and its derivative, ortho-vanillin (as 

potential TLR2-specific inhibitors) act by specific 

binding to a particular pocket located inside the TIR 

domain of TLR2, altering its activity and 

conformation.
157

The human embryonic kidney 293 

(HEK293) and human acute monocytic leukemia 

(THP-1) cells transfected with TLR2 exhibit low level 

secretion of IL-8 after treatment with C29.  

Down-regulation of the expression of TLR-related 

cytokine and chemokine response also was indicated 

by using soluble decoy receptors. A soluble kind of 

TLR2 (sTLR2) binds to a vast board of related PAMP 

and DAMP, hence, prevents the ligation of receptor 

on cellular membrane.
158

Low amounts of sTLR2 were 

indicated in a number of infectious and inflammatory 

diseases.
158-160

 The possible using of sTLR2 for 

attenuating MS disease need more consideration.  

The suppression of the TLRs-related responses  

with neutralizing monoclonal antibodies may be a 

promising therapeutic strategy. A specific monoclonal 

antibody against TLR2 reduces the formation of the 

pro-inflammatory cytokines in Malasseziafurfur-

infected keratinocytes as an experimental model of 

psoriasis.
161

 

Further, the administration of the TLR2-specific 

monoclonal antibody may has beneficial therapeutic 
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effects. OPN-305 is a humanized IgG4 monoclonal 

that binds to the ligand-binding site of TLR2, 

suppressing its heterodimerization with TLR1 or 

TLR6. OPN-305 inhibits the TLR2-associated 

cytokine secretion.
162

 Now, the efficacy and safety of 

OPN-305 in delayed graft function are evaluated in a 

phase-II of clinical trial study (NCT01794663).
163

 A 

single-chain variable fragment (scFv) against TLR2 

also suppresses the TLR2-related immune responses 

in vitro.
164

 Potentially, similar antibody or fragment 

may be developed for modulating inflammatory 

reactions in MS. 

There are reports indicating that TLR2 agonists 

may contribute to the prevention of EAE (165). The 

TLR2-induced expression of IL-12 and TNF-α was 

also reduced in mice administrated C29.
157

 Moreover, 

a TLR2 peptide (TLR2-p) inhibits the TLR2 

dimerization and decreases the extracellular signal-

regulated kinases (ERK) expression and the 

expression of the pro-inflammatory cytokines.
166

 In  

an experimental model of colitis, it was indicated that 

TLR2-p reduces the production of the pro-

inflammatory cytokines and result in the attenuation 

of disease.
166

 Mice treated with a neutralizing 

antibody against TLR2 were protected against sepsis-

related death due to infection with Bacillus subtilis.
167

 

The TLR-related regulatory proteins may have 

also therapeutic potentials. A20 is a powerful anti-

inflammatory molecule that prevents NF-κB 

activation in upstream regions by direct suppression 

of IKK-inducing proteins such as 

TRAF6.
168

TheA20expression is decreased in the 

peripheral blood samples from MSpatients in 

comparison with healthy individuals.
169

 The A20-

deficient mice are more susceptible to EAE induction 

and the A20-deficient microglia also display more 

pro-inflammatory characteristics such as IL-1β 

production.
170

The TLR2-related responses are also 

influenced by the Pellino family proteins (including 

Pellino1, Pellino2 and Pellino3) which bind to 

downstream TLR-associated signaling molecules 

IRAK1, IRAK4 and TRAF6 therefore, perform a key 

role in the regulating of TLR signaling.
171

 The 

Pellino1 and Pellino2 have pro-inflammatory effects, 

while Pellino3 exert a negative regulatory role.
172

 It 

has been indicated that the Pellino1 expression is 

increased in the microglia cells from EAE mice that 

mediates the expression of the proinflammatory 

elements in microglia and reinforces the recruitment 

of T cells into the CNS.
173

 The severity of EAE is 

reduced in Pellino1-deficient mice.
173

 The low 

expression of Pellino3 together with the high 

expression of Pellino1 and Pellino 2 may be important 

parameters influencing the severity of MS.  

The Dok1 and Dok2 regulators also control the 

TLR2 activity. The transmitted signals from TLR2 

elicit the Dok1 and Dok2 phosphorylation. The 

phosphorylated Doks inhibit ERK and NF-κB in the 

TLR2-associated pathways.
63

 Further, IRAK-M binds 

to IRAK-1/IRAK-4 connected to MyD88, thereby 

inhibiting IRAK-1/TRAF6 downstream signaling.
174

 

In addition, Tollip serves as a suppressor of NFκB 

through direct binding to IRAK-1 and IRAK-2 and 

preventing their auto-phosphorylation.
175

 Syk is also 

directly associated with several TLR-related signaling 

components, including MyD88, TRIF, TRAF3, 

TRAF6 and TAK1.
176

 Syk exerts its anti-

inflammatory effects through suppression of TRAF6 

in the MyD88-dependent pathway.
176

 The elucidation 

of the exact role of Pellino family proteins, Dok 

molecules, IRAK-M, Tollip and Syk during MS 

development and their therapeutic potentials need 

more considerations (Figure 2). 

Eventually, reducing the TLR2 expression may 

provide another strategy to regulate the inflammatory 

responses resulted by TLR2. One possible method for 

this purpose is the using of microRNAs (miRNAs) or 

siRNA. The reducing effects of a TLR2-specific 

siRNA on the corneal inflammation and attenuation of 

keratitis were reported in a rat model.
177

 The miRNA-

21 also suppresses the TLR2-associated lung 

inflammation in mice.
178

 Similar strategies by 

targeting TLR2-related signaling pathways may have 

therapeutic potential capacities to consider in future 

investigations concerning the treatment of MS. 

Our study may have some limitations that need to 

consider in future studies. The possible influences of 

the TLR2-related signaling on other effector cells that 

are involved in the pathogenesis of the MS and EAE 

(CTLs, Th9-, Th22-, B-, NK-, and NKT cells) need to 

be clarified in further researches. Further, evaluation 

of the genetic variations such as single-nucleotide 

polymorphism (SNP) in the TLR2 gene and its related 

signaling molecules and their association with 

susceptibility to MS need more consideration.   
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Figure 2. A schematic figure showing the influences of the 

regulatory proteins on the Toll-like receptor 2 (TLR2)-

related pathways. The central nervous system (CNS)-

derived components and pathogen-derived molecules are 

recognized by TLR2 and then trigger the TLR-related 

signaling pathway, which influence the infiltrated 

leukocytes and residential cells of the CNS. The 

regulatory proteins also affect the TLR-mediated 

responses. The roles of parameters displayed in 

discontinuous shapes, which either affect or are affected 

by TLR2-related signaling, remain to be clarified in 

further researches on both multiple sclerosis (MS) and 

experimental autoimmune encephalomyelitis (EAE) 

diseases. 

 

 

CONCLUSION 

 

Although there are considerable similarities 

between EAE and MS, however, there are some 

differences between the two disorders such as the 

disease induction, course of disease progression, 

localization of the CNS damages, and participating 

immunopathological mechanisms.
179

 For example, 

EAE and MS are mainly dominated by CD4
+
 T- and 

CD8
+ 

T cells, respectively.
179

 Father, IFN-γ is not 

required for EAE induction and may have may have 

preventive effects, while IFN-γ supplementation 

exacerbate MS.
179

 As mentioned, there are considerable 

overlap between MS and EAE regarding the TLR2-

related immunoplathological mechanisms. However, 

the differential roles of TLR2 concerning the 

aforementioned differences between EAE and MS need 

to be elucidated in future studies.   

The expression of TLR2 is up-regulated in 

residential and infiltrating cells during MS and EAE. 

Some of DAMP act as TLR2 ligands and it is possible 

that harmful stimuli such as injury, infection, stress and 

cell death trigger DAMP releasing within the CNS. The 

available evidences indicate that the pathologic roles of 

TLR2 are clearly more than of its protective role during 

MS and EAE diseases. The binding of DAMP and/or 

PAMP to TLR2 may contribute a significant role in the 

development of MS and EAE through promotion of the 

chronic inflammation and demyelination within the 

CNS. The inhibition of abnormal TLR2-related 

signaling pathways and its linked inflammatory 

responses may have a potential therapeutic approach 

for the treatment of MS disease. However, the results 

of a few studies indicate that TLR2 may have a 

protective role against EAE and MS diseases. The 

factors influencing the plasticity of TLR2-dependent 

responses during MS and EAE diseases and 

modification of this plasticity in a favorable direction 

should also be considered in further investigations.  
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