Research Article

6

Effect of Pleasantness and Unpleasantness of Music on the Acceptable Noise Level

Raha Nekoutabar' 💿, Hamid Jalilvand'' 💿, Hasan Ashayeri' 💿, Mohammad Ebrahim Mahdavi' 💿, Seyed Mahdi Tabatabaee' 💿

¹ Department of Audiology, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran

² Department of Basic Sciences, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran

³ Department of Basic Sciences, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Citation: Nekoutabar R, Jalilvand H, Ashayeri H, Mahdavi ME, Tabatabaee SM. Effect of Pleasantness and Unpleasantness of Music on the Acceptable Noise Level. Aud Vestib Res. 2023;32(3):204-12.

doi[®] https://doi.org/10.18502/avr.v32i3.12936

Highlights

- This study investigates the effect of pleasant/unpleasant music on the ANL
- The pleasantness of music decreases its negative conceptual effects as noise
- The ANLs are more widespread for dichotic listening than for monotic listening

Article info:

Received: 06 Dec 2022 Revised: 30 Jan 2023 Accepted: 22 Feb 2023

* Corresponding Author:

Department of Audiology, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran. hamidjalilvand4@gmail.com

ABSTRACT

Background and Aim: Music can be a favorite, annoying, or even a distracting noise. It is known that the processing of brain hemispheres is affected by the pleasantness/unpleasantness of music, which could be utilized as a signal or noise in auditory neuroscience. By using the Acceptable Noise Level (ANL) test, which is the quantification of noise tolerance while listening to a running speech, we investigated whether the pleasantness/unpleasantness of music affects the ANL results under monotic-listening and dichotic-listening conditions.

Methods: Based on the subjective scale scores, pleasant and unpleasant music (10 songs) were selected as alternatives to babble noise or running speech for testing 50 subjects for seven monotic and dichotic listening conditions.

Results: While pleasant music changed the ANL significantly under monotic listening conditions, the higher level of babble noise was tolerated, and both characteristics of music pleasantness and unpleasantness changed ANL significantly for various dichotic conditions. The range of the ANL for dichotic conditions is wider than that for monotic conditions.

Conclusion: Music can affect the ANL in terms of pleasantness and unpleasantness for both monotic and dichotic listening conditions, with a greater effect on dichotic conditions, indicating the role of hemispheric specification in emotional music processing.

Keywords: Acceptable noise level; dichotic listening; monotic listening; noise; brain processing

Copyright © 2023 Tehran University of Medical Sciences. Published by Tehran University of Medical Sciences This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/)

Noncommercial uses of the work are permitted, provided the original work is properly cited.

Introduction

usic is a central feature in daily life across cultures [1], which is composed of physically complex sounds, resulting in an emotion that is related to harmony, rhythm, and melody. Con-

sequently, the listener decides whether they prefer the heard music [2]. Someone likes or dislikes a piece of music is dependent on subject-related factors such as biography, preferences, age, and the duration of exposure to music [3, 4].

Although the left and right hemispheres of the brain are dominant for language and emotional processing (especially negative feelings), respectively [5], there are overlapping neural resources for music and language processing [6-8]. It has been proven that a higher rate of musical unpleasantness correlates with the activation of the right parahippocampal gyrus, whereas a lower rate of unpleasantness is correlated with the activation of the frontopolar, orbitofrontal, and subcallosal cingulate cortex [9]. In addition, pleasant music activates limbic and paralimbic areas (e.g., subcallosal cingulate cortex, anterior insula, posterior part of the hippocampus, and part of the ventral striatum) [10]. Thus, while the auditory cortex is associated with perceptual analysis [9], the paralimbic areas are associated with an emotional evaluation of dissonance [9, 11]. Unpleasant music activates the right frontopolar and paralimbic areas, nevertheless, pleasant music activates the left primary auditory posterior temporal, inferior parietal, and prefrontal areas [7].

Substantial information on the effects of music on humans, even as noise, has been provided by psychological studies [12]. Music selection and preference are strongly based on explicit characteristics, such as age, personality, and values [13]. If music is not an auditory target for a listener, despite being pleasant and preferred, it would be considered noise, leading to a listener's lack of attention to that auditory target. Compared with other typical noises (e.g., environmental, babble, and computer noises), music significantly affects people [14, 15].

The Acceptable Noise Level (ANL), originally presented by Nabelek et al. [16], is used to quantify the individual tolerance of noise while listening to an auditory target (running speech). While some factors (age, sex, and gender of the speaker) do not affect the ANL [16-20], it is highly meditated by non-peripheral factors such as efferent activity in higher auditory processing centers [21], and the type of noise [16, 22, 23]. Binaural processing centers, beyond the level of the superior olivary complex, are involved in the ANL. In addition, Nabelek et al. showed that light music used as background noise increased the ANL [16], implying that music (with meaningful content) acts more effectively than babble noise (with less meaningful content). However, using six types of rock music and babble noise as the background noise, it was observed that subjects tolerated a higher level of music than twelve-talker babble noise [24].

An investigation of the effects of the type of music (classic, pop, and Korean pop) as background noise has shown that the type of music affects the ANL [23]. The meaningfulness of the content affects the ANL; more noise is tolerated for meaningful speech materials than for non-meaningful materials. Various auditory stimuli have been used in previous research for measuring the ANL [22, 25-27]; however, a few studies used music as the background noise for the ANL measurement [16, 23, 24]. However, music has not been tested as a replacement for running speech in the traditional ANL measurement. Conversely, monotic and dichotic ANL testing has been accomplished by running speech and babble noise as the signal and noise, respectively [21]. It has been found that, with nearly 3 dB differences between monotic and dichotic ANLS, there is a positive correlation between measures of monotic and dichotic ANL [21], indicating that subjects who tolerated more noise in the monotic testing condition are able to tolerate more noise in dichotic testing mode. To date, there has been little research conducted on the ANL measurement listening to the music dichotically. Dichotic listening, which simultaneously presents different stimuli to each ear, is a behavioral testing approach to assess hemispheric asymmetry in auditory modality [28]. Studies have shown that the left hemisphere is specialized for verbal processing, while the right hemisphere dominates in the processing of musical characteristics, such as the detection of timbre [29]. Since the ANL is related to higher auditory brainstem centers (inferior colliculus) in which binaural hearing processing occurs, more investigation on the dichotic processing (that is the main facet of binaural hearing) is essentially critical. Especially as for ANL which is a typical quantitative indication of noise tolerance (which is another main facet of binaural hearing processing).

Therefore, this study aimed to investigate the effect of pleasant/unpleasant music on the ANL that was monotically and dichotically measured using pleasant or unpleasant music as noise and signal under headphones. These results were then compared with the typical ANL measures obtained by running speech and babble noise as the signal and background noise, respectively.

Methods

Participants

A total of 50 subjects (34 females and 16 males) aged 18–39 years participated in this study. All subjects were right-handed students at the Rehabilitation School (Beheshti University of Medical Sciences, BUMS, Tehran, Iran) with normal hearing, which was confirmed by normal results from otoscopy, the immittance test (tympanometry and acoustic reflex), and pure tone and speech audiometry. None of the participants had any history of neurologic pathologies. All participants signed written consent.

Music selection

In the first phase of the study—selecting songs—we chose 10 songs out of the 25 most popular songs from best-selling Persian song albums (in the reference of Kayhan Newspaper, published in Tehran, Iran, https://www.kayhan.ir), as well as those with the highest number of downloads from Radio Javan (Collection of Persian music, https://www.radiojavan.com/) in the last two years. All songs, originally Persian, were played for 10 people who were then asked to subjectively rate each song based on pleasantness from 1 (low) to 10 (high). Based on these ratings, 10 songs were finally chosen.

In the second phase of the study—ranking songs—all participants were asked to listen to the ten selected songs as much time as they wanted to. Then, they were asked to rate them on a visual scale from 1 (less preferred) to 10 (highly preferred). The score was recorded separately for each song in a form, all song-related components were addressed—the voice of the singer, rhythm, and subjective feelings post-listening (Table 1).

In the third phase, the songs were saved as separate "wav." files on a computer, and the Root Mean Square (RMS) of all the songs was derived using Adobe Audition software (Adobe Co, 2017, USA).

The acceptable noise level testing

In sum, the ANL tests were approached in the following ways

1) The typical ANL test, which plays a female speaker's running speech (as the speech signal) with a 12-talkers babble noise (as the noise signal), and 2) The modified ANL test includes composites of various conditions such as a female speaker's running speech, less preferred music and highly preferred music (as the speech signal and noise signals, respectively).

For typical ANL testing, the Persian version of the ANL test was used [30]. For the modified ANL conditions, the RMS of all songs were calibrated in terms of female speakers' speech or 12-talker babble noise using Adobe Audition software (Adobe Co, 2017, USA). The calibration was the same for both monotic and dichotic listening conditions.

All signals were played through headphones (TDH-39) using a laptop (Dell Co, USA), connected via a 2.5 mm audio jack to a clinical audiometer (AC40, Interacoustics Co, Denmark), which was calibrated in concordance with the American National Standards Institute code [31]. Both the volume of the laptop and auxiliary audiometer input were set at 0 volume units using a calibrated tone of 1000 Hz, which was included in the typical ANL Persian test. All the above ANL tests were performed under monotic and dichotic listening conditions. For the monotic listening condition, the right ear was tested; both the signals and noises were presented monaurally. For the dichotic condition, the signals and noises were presented to the right and left ears, respectively.

Each ANL testing consists of three stages, as listed below

1) The Most Comfort Level (MCL) measurement: a female speaker's running speech is presented by a calibrated audiometer at 30 dB HL through a headphone, and the subject is asked to listen and provide feedback about its level. The level of the speech is then increased and decreased, depending on the subject's signal (thumb up and thumb down, respectively), in steps of 5 dB. Near the final adjustment, 2 dB steps are used for the exact determination of the MCL. After two repetitions, the average is recorded as the MCL measurement.

2) The Background Noise Level (BNL) measurement: while presenting the female speaker's running speech at the measured MCL, a background noise (12-talker noise) is presented at a starting level of 30 dB HL. The level of noise is increased in steps of 5 dB, and the subject is asked to moderate the level until it becomes intolerable. Again, after reaching the final level of noise, the 5 dB steps are replaced by 2 dB steps. The BNL is the highest level of noise that a subject can tolerate. After two repeated measurements, the average is recorded as the BNL. Since there are various vocal and musical components within a song, the BNL measurements are obtained in three different and sufficiently lengthy parts

Song name	Singer	Mean score(SD)		
30 Salegi	Ehsan Khajeh Amiri	7.84(2.00)		
Roya-ye Bi Tekrar	Ali Zand Vakili	7.02(2.02)		
Harmless Ruler	Mohsen Chavoshi	6.70(2.21) 6.14(2.24)		
The Road's Dancing	Charttaar band			
Full Length Mirror	Mehdi Yarrahi	5.76(2.55) 5.18(2.63) 5.02(2.31)		
Dele Majnoon	Mohammad Reza Shajarian			
Khoda Hamin Havalie	Hamed Homayoun			
Ta Nafas Hast	Shahram Shokoohi	4.40(2.08)		
Ansolute Nothingness	Hafez Nazeri	4.00(2.53)		
Manshour	Kave Yaghmaei	2.98(1.82)		

Table 1. Music tracks used as pleasant and unpleasant music in terms of the means of subjective scores provided by participants

of the running music. The averaged measure is then recorded as the BNL for music.

For the dichotic condition, while the running speech or music signals were presented to the right ear at the MCL, babble or music noise as the background noise was presented to the left ear.

3) The ANL measure: The ANL is obtained by subtracting the BNL from the MCL (ANL=MCL-BNL).

In total, ANL measures were obtained for seven conditions under both monotic and dichotic listening. The total duration for testing each participant was approximately 90 min. For each monotic and dichotic listening condition, various other conditions were tested randomly for every subject, and several resting periods were provided.

Statistical method

SPSS (v.17.0) was used to analyze the study data (IBM Corp, Armonk, New York, USA). Descriptive statistical parameters, such as the means, standard deviations, and ranges of the MCL, BNL, and ANL results were considered. In this study, six modified types of ANL (speech-pleasant music), (speech-unpleasant music), (pleasant music-babble noise), (unpleasant music, babble noise), (pleasant music-unpleasant music), (unpleasant music-pleasant music) in order to compare with traditional ANL (speech-babble noise) under two conditions of monotic and dichotic listening were performed. The Shapiro-Wilk test revealed the normality of data distribution. A repeated measure analysis of variance (ANOVA) (Greenhouse-Geisser) as within-subject comparisons were implemented on ANLs under two conditions of monotic and dichotic listening, separately. To examine pairwise comparisons under either condition, contrasts polynomial comparisons were applied. Thus, obtained statistically significant differences were based on Bonferroni correction in this part. Moreover, to determine any relationship of ANLs under two conditions, mixed repeated measures between subject comparisons were organized. Regarding the fact that Mauchly's test of Sphericity was significant, the Greenhouse-Geisser correction was utilized to regulate the F values and degrees of freedom. In this study, the considered crucial significance was p<0.05.

Results

The descriptive statistics (range, mean, and standard deviation) for the MCL, BNL, and ANL are presented separately for monotic and dichotic listening conditions in Table 2. As indicated in the table, the range of ANL for typical conditions (speech and babble noise) is -5 to 12 and -40 to 20 dB for monotic and dichotic conditions, respectively. A mixed repeated measures ANOVA was conducted to compare the ANL results under the two conditions of monotic and dichotic. According to the analysis of variance, the main effect of either condition [F(4.22, 413.73)=16.11, p<0.001, Eta=14.1] and the interaction [F(4.22, 413.73)=17.83, p<0.001, Eta=15.4] were significant. Generally, there is a wide range of

ANLs for all dichotic conditions compared to monotic conditions. In addition, the ANL means for dichotic conditions are lower than their monotic peers, especially when the signal is a running speech presented to the right ear [-12(16.2) vs. 0.6(3.4) and -9.7(14.6) vs. -1.1(4.7)db under the speech+babble noise and speech+pleasant music conditions, respectively]. there is a difference of 12.6 and 8.6 db between monotic and dichotic listening under the speech+babble noise and speech+pleasant music conditions, respectively, this finding indicates that subjects tolerated much more noise in the dichotic listening condition when the speech signal was presented to the right ear and the babble noise or pleasant/ unpleasant music to the left ear. for dichotic listening, when the signal is pleasant or unpleasant music, the anl gets higher [-1.2(17.2) and 2.8(16.9) dB for unpleasant music+pleasant music and pleasant music+unpleasant music conditions, respectively]. the worst-case scenario for the dichotic measure of ANL is when pleasant music is presented to the right ear and unpleasant music is presented to the left ear. Furthermore, to evaluate the effect of using different signals and background noise types on the ANL results under either condition, the repeated measures ANOVA (within-subject's comparisons) was applied. In these cases, because Mauchly's test of sphericity was significant for ANLs (Mauchley's W=0.25, p<0.001 and Machauley's W=0.24, p<0.001) under monotic and dichotic listening conditions, respectively, the Greenhouse-Geisser was required.

For the ANLs under monotic listening (Figure 1), the repeated measures ANOVA test showed statistically significant differences between the baseline condition (speech+babble noise) and speech+pleasant music [F(3.89,190.72)=4.71, p<0.024] and pleasant music+babble noise (p<0.001) conditions. when babble noise is replaced by pleasant music, the anl tends to be lower, implying that the subjects tolerated pleasant music more easily than babble noise. in contrast, when listening to unpleasant music as noise, the results are similar to those of the babble noise condition. furthermore, the best scenario among the monotic listening conditions is for the pleasant music+babble noise condition which has a lower anl in comparison with its peer speech condition (speech+babble noise condition).

For dichotic conditions (Figure 1), there were statistically significant differences among the baseline condition (speech+babble noise) and all other conditions [F(4.02,197.22)=18.5, p<0.001] for all comparisons),

			CD D14	CD 1104					
		SP-BN	SP-PIVI	SP-UM	PIVI-BN	OM-RN	РМ-ОМ		
	Range	50 to 80	45 to 70	45 to 75	45 to 90	45 to 80	45 to 85	45 to 80	Monotic
MCL (dB HL)	Mean (SD)	64.30(7.95)	61.70(8.11)	61.50(7.64)	64.40(9.72)	62.96(8.88)	64.80(8.74)	62.50(9.10)	
	Range	45 to 80	45 to 85	45 to 80	50 to 85	45 to 85	45 to 90	45 to 85	Dishatia
	Mean (SD)	63.10(8.32)	63.90(8.93)	64.10(8.73)	69.40(9.40)	64.30(10.25)	68.70(9.57)	65.90(10.53)	Dictionic
	Range	46 to 80	45 to 81	38 to 81	41 to 90	40 to 88	40 to 86	41 to 80	Monotic
BNL	Mean (SD)	63.70(9.14)	62.86(8.93)	61.42(9.56)	66.40(11.04)	63.90(10.01)	64.44(10.58)	62.38(9.59)	Wohotie
(dB HL)	Range	35 to 100	40 to 100	35 to 95	30 to 95	35 to 95	20 to 95	40 to 100	Dichotic
	Mean (SD)	75.10(17.77)	73.60(15.58)	67.50(15.72)	68.70(17.31)	67.80(16.75)	65.90(17.42)	67.10(17.87)	Dichotic
	Range	–5 to 12	–7 to 10	–9 to 19	–11 to 9	–13 to 8	–13 to 13	–12 to 9	Monotic
	Mean (SD)	0.60(3.42)	-1.16(4.75)	0.08(6.04)	-2.00(5.002)	-0.94(4.70)	0.36(6.12)	0.12(5.02)	WONOLIC
ANL (UB)									
	Range	-40 to 20	–40 to 20	-40 to 25	–45 to 40	-50 to 25	-40 to 35	–45 to 35	Dichotic
	Mean (SD)	-12.00(16.22)	-9.70(14.68)	-3.40(14.68)	0.70(15.94)	-3.50(14.82)	2.80(16.93)	–1.20(17.27)	

Table 2. The range, mean and standard deviation of the most comfortable level, background noise level, and acceptable noise level for monotic and dichotic listening under seven various conditions

SP-BN; speech and babble noise, SP-PM; speech and pleasant music, SP-UM; speech and unpleasant music, PM-BN; pleasant music and babble noise, UM-BN; unpleasant music and babble noise, PM-UM; pleasant music and unpleasant music, UM-PM; unpleasant music and pleasant Music, MCL; most comfort level, BNL; background noise level, ANL; acceptable noise level

Figure 1. Violin plots of the acceptable noise level under various conditions of monotic and dichotic listening. ANL; acceptable noise level, SP-BN; speech and babble noise, SP-PM; speech and pleasant music, SP-UM; speech and unpleasant music, PM-BN; pleasant music and babble noise, UM-BN; unpleasant music and babble noise, PM-UM; pleasant music and unpleasant music, UM-PM; unpleasant music and pleasant music

* p<0.05, ** p<0.001

except when the baseline condition (speech+babble noise) was compared with the speech+pleasant music condition (p=1.000). For dichotic conditions, the lowest and highest ANLs belonged to the speech+babble noise condition and pleasant+unpleasant condition, respectively, which was statistically significant (p<0.001). this was observed only for dichotic listening, suggesting that the emotional processing of signals affects the ANL measure when applied dichotically.

Most importantly, when applying dichotic listening, the two highest ANLs were observed when presenting pleasant music and unpleasant music to the right and left ears, or vice versa.

Discussion

Monotic condition

Replacing unpleasant music with babble noise did not change the ANL, but the pleasant music changed it significantly. In fact, pleasant music decreases the ANL (i.e. subjects tolerate high levels of noise). This finding indicates that babble noise and unpleasant music play similar roles, while pleasant music is not as bad as disliked noise such as 12-talker babble noise or unpleasant music. The pleasantness of music decreases its negative conceptual effects as noise. Thus, subjects can tolerate this type of noise at high levels. In other words, pleasantness reduces the perceived noisiness of music, rendering it a relatively tolerable noise.

In addition, the replacement of pleasant music for running speech alongside a 12-talker babble noise can decrease the ANL. This suggests that pleasant music is a strong signal that cannot be easily affected by babble noise. To affect pleasant music, a high level of babble noise is required. Therefore, pleasantness makes the signal stronger, such that obscurant noise cannot easily affect it. However, this pattern was not obtained when the unpleasant music was replaced with speech alongside the 12-talker babble noise. Comprehensively, these findings suggest that pleasantness and unpleasantness are affected differently by obscurant noise, such as 12-talker babble noise. Thus, music is shown to be consistently involved in the neurocognitive functions of the brain in auditory processing by affecting the mood, and consequently, the scope of auditory selective attention. Moreover, research on the effect of mood on auditory attention has shown that music, even if unfamiliar, can broaden the scope of attention via its effects on mood [32]. Specifically, listening to a happy musical rendition results in not only augmented event-related potentials to-be-ignored novel sounds but also reduced responses to target sounds that are reflected in behavioral measurement [32].

Dichotic procedure

First, based on 95% confidence intervals, the ANL results are more widespread for dichotic listening than for monotic listening. It seems this finding is consistent with earlier research in this field [33]. This suggests that, when presenting dichotically, individuals' performance, dependent on the variables involved in binaural processing, is different.

In dichotic listening, subjects tolerate much more noise than in the monotic condition. The highest noise intolerance is exhibited in the condition wherein the speech and babble noise are presented dichotically. Compared to the monotic condition, the ANL is more than 11 dB lower for the dichotic condition. This finding indicates that subjects can tolerate more noise when each speech signal and babble noise are presented separately into each ear. Interestingly, when babble noise was replaced by unpleasant music, this difference was reduced significantly-a finding that was not observed for the pleasant music condition. Since the binaural processing centers affect the ANL, this finding indicates that unpleasantness strongly interferes with the dichotic presentation. On average, it reduces the subject's intolerance by more than 8 dB. Thus, the unpleasantness of music, such as noise, can modulate brain processing during dichotic listening. The emotional factor of music, at least as noise, can interfere with binaural processing in the brain hemispheres.

When the speech signal is replaced by pleasant/unpleasant music in dichotic conditions, the ANL increases. This means that 12-talker babble noise affects pleasant/unpleasant music effectively; however, a reverse result was observed for the monotic counterpart. For the monotic condition of pleasant/unpleasant music and 12-talker babble noise, the ANL is lower compared to the monotic presentation of speech and babble noise. For dichotic conditions, although there is no statistically significant difference, babble noise affects pleasant music more effectively than unpleasant music (there is a difference of 4.2 dB between them). For the monotic condition of pleasant music, the ANL is reduced by 2.6 dB (i.e., the subjects can tolerate a 2.6 dB higher level of noise), while it is increased by 12.7 dB for the dichotic condition (i.e., the subjects could tolerate a 12.7 dB lower level of noise). Consistently, for the monotic condition of unpleasant music, the ANL is reduced to -0.94 dB (i.e. the subjects could tolerate a 1.54 dB higher level of noise), while it was increased by 8.5 dB for the dichotic condition (i.e. the subjects could tolerate an 8.5 dB lower level of noise). A comparison of the monotic and dichotic conditions shows that the ANL mechanism is related not only to the presentation of signal and noise to the ears but also to the content of signal and noise. Research has consistently shown that the ANL outcome depends on the meaningfulness of signal materials [27]. Moreover, the findings of this study are consistent with the theory of dichotic perception. Since pleasant/unpleasant music and 12-talker babble noise were presented to the right and left ears, respectively, the music perception deteriorated; this is because the babble noise involves the right brain hemisphere that is necessary for experiencing music as pleasant or unpleasant, which is relayed from the left ear contra pathways to the left hemisphere and finally to the right hemisphere. The question of why pleasant music is more affected than unpleasant music is left unanswered. Determining the difference in perception between pleasant and unpleasant music in relation to hemispheric processing and the role of the corpus callosum is an interesting subject for future neuroscientific research, especially in brain imaging research. However, we did not observe any statistically significant differences in this study.

Similar to the research methodology of the current study to determine the effect of meaningfulness and semantic coherence of signals on ANL [27], we changed the semantic coherence and meaningfulness of both signal and noise (i.e. whether the pleasant/unpleasant music is used both together as the signal and noise or separately, alongside speech or babble noise). Consistent with their conclusion (that meaningfulness, but not semantic coherence of the speech material, affected the ANL), our findings indicate that meaningfulness plays the central role, but only for monotic listening conditions. Our results revealed the role of semantic coherence in the ANL dichotic processing as a new finding.

Moving from speech and babble noise conditions to pleasant and unpleasant music conditions consistently reduced the ANL, indicating that emotional processing is involved when presented dichotically rather than monotically. A greater separation between the emotional level of the signal and noise leads to a greater difference between the physical level of their intensities, and consequently, greater attention to the signal and greater noise tolerance. However, a more emotional level of the signal and noise (such as using music instead of speech and babble noise) leads to more attention paid to musical signals and lesser tolerance for musical noise. Therefore, we should consider the emotional effects of the signal and noise when testing the ANL dichotically.

When presenting dichotically white noise and music (or poetry) to subjects, both music and poetry are judged as more pleasant [34]. Due to its special meaningful content, music acts beyond simple noise. Listening to music can affect functional cerebral asymmetries in emotional and cognitive laterality tasks [35]. In addition, some of the musical specifications affect the ANL relatively more, such that music genre affects the ANL rather than the music tempo [23]. Our study showed that pleasantness and unpleasantness can also affect ANL, especially when measured dichotically. This finding is consistent with the result of Ghaheri et al.'s study, reporting that the pleasantness decreases the feeling of noisiness of competitive noise alongside listening to the target signal in dichotic conditions. On the other hand, this study showed participants could tolerate pleasant music more than unpleasant music as a distracting noise in dichotic conditions [33]. The ANL is meditated by higher binaural centers (from the lower brainstem to the higher brain centers) when presented dichotically [21] and the emotion with music is encoded in both the brainstem level and various higher brain centers [36]. Therefore, the combination of music and the ANL measurements can effectively measure behavioral cognitive auditory processing for various aspects of music. However, we completed the current dichotic processing investigation for only the right ear. In the future study of modified ANL by using music, involving the left ear, and comparing those results with acquired findings are suggested.

Conclusion

Music can affect the acceptable noise level results in terms of pleasantness and unpleasantness for both monotic and dichotic listening conditions, with a greater effect on dichotic conditions, indicating the role of hemispheric specification in emotional music processing.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of Shahid Beheshti University of Medical Sciences (IR.SBMU.RETECH.REC.1401.612).

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions

RN: Study design, acquisition of data, statistical analysis, interpretation of the results, drafting the manuscript; HJ: Study design and supervision, interpretation of the results, and critical revision of the manuscript; HA and MEM: Interpretation of the results, and validation the final revision of the manuscript; SMT: Statistical analysis.

Conflict of interest

There are no competing financial interests.

Acknowledgements

We would like to thank Dr. Fatemeh Sadat Ghaheri for her valuable help.

References

- DeNora T. Music in Everyday Life. 1st ed. Cambridge: Cambridge University Press; 2000. [DOI:10.1017/ CBO9780511489433]
- [2] Kleć M. The Influence of Listener Personality on Music Choices. Comput Sci. 2017;18(2):163. [DOI:10.7494/ csci.2017.18.2.163]
- McDermott JH, Lehr AJ, Oxenham AJ. Individual differences es reveal the basis of consonance. Curr Biol. 2010;20(11):1035-41. [DOI:10.1016/j.cub.2010.04.019]
- [4] Nieminen S, Istók E, Brattico E, Tervaniemi M, Huotilainen M. The development of aesthetic responses to music and their underlying neural and psychological mechanisms. Cortex. 2011;47(9):1138-46. [DOI:10.1016/j.cortex.2011.05.008]
- [5] Bulman-Fleming MB, Bryden MP. Simultaneous verbal and affective laterality effects. Neuropsychologia. 1994;32(7):787-97. [DOI:10.1016/0028-3932(94)90017-5]
- [6] Koelsch S, Siebel WA. Towards a neural basis of music perception. Trends Cogn Sci. 2005;9(12):578-84. [DOI:10.1016/j. tics.2005.10.001]
- [7] Flores-Gutiérrez EO, Díaz JL, Barrios FA, Favila-Humara R, Guevara MA, del Río-Portilla Y, et al. Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol. 2007;65(1):69-84. [DOI:10.1016/j.ijpsycho.2007.03.004]
- [8] Koelsch S. Toward a neural basis of music perception a review and updated model. Front Psychol. 2011;2:110. [DOI:10.3389/fpsyg.2011.00110]
- [9] Blood AJ, Zatorre RJ, Bermudez P, Evans AC. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci. 1999;2(4):382-7. [DOI:10.1038/7299]

- [10] Brown S, Martinez MJ, Parsons LM. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport. 2004;15(13):2033-7. [DOI:10.1097/00001756-200409150-00008]
- [11] Koelsch S, Fritz T, V Cramon DY, Müller K, Friederici AD. Investigating emotion with music: an fMRI study. Hum Brain Mapp. 2006;27(3):239-50. [DOI:10.1002/hbm.20180]
- [12] Eggermont JJ. Noise and the Brain: Experience Dependent Developmental and Adult Plasticity. 1st ed. San Diego, CA: Academic Press; 2014.
- [13] Greenberg DM, Baron-Cohen S, Stillwell DJ, Kosinski M, Rentfrow PJ. Musical Preferences are Linked to Cognitive Styles. PLoS One. 2015;10(7):e0131151. [DOI:10.1371/journal. pone.0131151]
- [14] Staum MJ, Brotons M. The effect of music amplitude on the relaxation response. J Music Ther. 2000;37(1):22-39. [DOI:10.1093/jmt/37.1.22]
- [15] Furnham A. Strbac L. Music is as distracting as noise: the differential distraction of background music and noise on the cognitive test performance of introverts and extraverts. Ergonomics. 2002;45(3):203-17. [DOI:10.1080/00140130210121932]
- [16] Nabelek AK, Tucker FM, Letowski TR. Toleration of background noises: relationship with patterns of hearing aid use by elderly persons. J Speech Hear Res. 1991;34(3):679-85. [DOI:10.1044/jshr.3403.679]
- [17] Freyaldenhoven MC, Smiley DF, Muenchen RA, Konrad TN. Acceptable noise level: reliability measures and comparison to preference for background sounds. J Am Acad Audiol. 2006;17(9):640-8. [DOI:10.3766/jaaa.17.9.3]
- [18] Rogers DS, Harkrider AW, Burchfield SB, Nabelek AK. The influence of listener's gender on the acceptance of background noise. J Am Acad Audiol. 2003;14(7):372-82; quiz 401. [DOI:10.1055/s-0040-1715756]
- [19] Plyler PN, Alworth LN, Rossini TP, Mapes KE. Effects of speech signal content and speaker gender on acceptance of noise in listeners with normal hearing. Int J Audiol. 2011;50(4):243-8. [DOI:10.3109/14992027.2010.545082]
- [20] Harkrider AW, Tampas JW. Differences in responses from the cochleae and central nervous systems of females with low versus high acceptable noise levels. J Am Acad Audiol. 2006;17(9):667-76. [DOI:10.3766/jaaa.17.9.6]
- [21] Harkrider AW, Smith SB. Acceptable noise level, phoneme recognition in noise, and measures of auditory efferent activity. J Am Acad Audiol. 2005;16(8):530-45. [DOI:10.3766/ jaaa.16.8.2]
- [22] Gordon-Hickey S, Moore RE. Acceptance of noise with intelligible, reversed, and unfamiliar primary discourse. Am J Audiol. 2008;17(2):129-35. [DOI:10.1044/1059-0889(2008/06-0018)]
- [23] Ahn HJ, Bahng J, Lee JH. Measurement of Acceptable Noise Level with Background Music. J Audiol Otol. 2015;19(2):79-84. [DOI:10.7874/jao.2015.19.2.79]
- [24] Gordon-Hickey S, Moore RE. Influence of music and music preference on acceptable noise levels in listeners with normal hearing. J Am Acad Audiol. 2007;18(5):417-27. [DOI:10.3766/ jaaa.18.5.6]

- [25] Brännström KJ, Zunic E, Borovac A, Ibertsson T. Acceptance of background noise, working memory capacity, and auditory evoked potentials in subjects with normal hearing. J Am Acad Audiol. 2012;23(7):542-52. [DOI:10.3766/jaaa.23.7.6]
- [26] Ho HC, Wu YH, Hsiao SH, Stangl E, Lentz EJ, Bentler RA. The equivalence of acceptable noise level (ANL) with English, Mandarin, and non-semantic speech: a study across the U.S. and Taiwan. Int J Audiol. 2013;52(2):83-91. [DOI:10.3109/149 92027.2012.733422]
- [27] Koch X, Dingemanse G, Goedegebure A, Janse E. Type of Speech Material Affects Acceptable Noise Level Test Outcome. Front Psychol. 2016;7:186. [DOI:10.3389/fpsyg.2016.00186]
- [28] Hoch L, Tillmann B. Laterality effects for musical structure processing: a dichotic listening study. Neuropsychology. 2010;24(5):661-6. [DOI:10.1037/a0019653]
- [29] Hugdahl K, Brønnick K, Kyllingsbaek S, Law I, Gade A, Paulson OB. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia. 1999;37(4):431-40. [DOI:10.1016/ S0028-3932(98)00101-8]
- [30] Ahmadi A, Fatahi J, Keshani A, Jalilvand H, Modarresi Y, Jalaie S. [Developing and evaluating the reliability of acceptable noise level test in Persian language]. Scientific Journal of Rehabilitation Medicine. 2015;4(2):109-17. Persian
- [31] American National Standards Institute. Maximum Permissible Ambient Noise Levels for Audiometric Test rooms (Rev. Ed.; ANSI S3.1.1999). New York, NY: Auther; 2008.
- [32] Putkinen V, Makkonen T, Eerola T. Music-induced positive mood broadens the scope of auditory attention. Soc Cogn Affect Neurosci. 2017;12(7):1159-68. [DOI:10.1093/scan/nsx038]
- [33] Ghaheri FS, Jalilvand H, Ashayeri H, Nekoutabar R, Makkiabadi B. Music Valence Can Affect Dichotic Listening Performance. Aud Vestib Res. 2023;32(1):1-8. [DOI:10.18502/avr. v32i1.11311]
- [34] Beaton AA. Hemispheric emotional asymmetry in a dichotic listening task. Acta Psychol (Amst). 1979;43(2):103-9. [DOI:10.1016/0001-6918(79)90016-7]
- [35] Hausmann M, Hodgetts S, Eerola T. Music-induced changes in functional cerebral asymmetries. Brain Cogn. 2016;104:58-71. [DOI:10.1016/j.bandc.2016.03.001]
- [36] Koelsch S. Investigating the Neural Encoding of Emotion with Music. Neuron. 2018;98(6):1075-9. [DOI:10.1016/j.neuron.2018.04.029]