Abstract

Background: activity in hot environments is among the most common physical dangers in work environments that not only creates diseases resultant from heat which influences on staff’s health but also increases job injuries and accidents. Job injuries, diseases, and reduction in workers’ efficiency in exposure to heat stress have caused increasing anxiety. Most of the study results are demonstrative of diseases as a result of heat and less related to job injuries and accidents. Therefore, the present study aims at reviewing previous studies in the field of job injuries and accidents in exposure to the work environment’s heat stress. Methods: this review study has systematically reviewed publications and articles from 2000 to 2019 in databases. Keywords including “heat stress”, “heat strain”, “heat exposure”, “heat wave”, “heat injuries”, “job accidents”, “job exposure”, “hot environment” and “air change” have been used and finally, 30 articles included into the study. Results: study articles consist of 29 jobs and 1 military environment. Study occupations consist of one study about military forces, textile, aluminum smelting, cleaners of oil reservoirs, two studies about miners and metal and iron industries, three studies about building workers, four studies about agricultural workers and 15 studies about different occupations. Also, 11 studies conducted in open environments, seven studies in closed environments and 12 others conducted both in open and closed environments. 17 analytical studies, three correlational, cross-sectional, cohort studies, one cohort, and descriptive study and two descriptive-analytical studies have been conducted. Most job injuries and accidents happened during summer and men especially the young have involved in such problems and job injuries and accidents have increased due to extreme temperature increase. Generally, job injuries and accidents include burn, slip, collision with things and collision with mobile things. Conclusion: there is a strong relationship between temperature in hot environments and risk increase in injuries and accidents of work environments which differ based on employees’ features (such as age, gender, occupation, and industry). However, dominant mechanisms on the happening of such injuries have not been determined yet. It necessitates more expertise to determine special injuries and accidents happening in hot environments. Policymakers and employers have to be more aware of job injuries and accidents in heat exposure and suitable educational resources have to be provided to prevent such injuries.

Keywords: Heat; Heat stress; Heat injuries; Job accidents; Heat wave

Introduction

The earth temperature increase has increased heat loads in open and closed environments which not only threatens the health of society individuals but also disrupts health, continence, and comfort of workers in hot environments especially employees in open environments. In open work environments, direct sunlight exposure besides
destructive sanitary and health effects causes humans’ performance failure in work conditions. Workers in different industrial sections such as agriculture, forestry, fishery, and construction are exposed to external heat stress and sun heat which have undesired effects on workers’ health. Moreover, workers in hot environments without air conditioning like metal smelting industry, foundry, steel, bakeries, laundries, and caterers are also affected by these hot conditions and encounter with undesired effects of heat. In such occupations besides external heat exposure especially during hot seasons in hot and dry areas, heat is created in the body while doing physical actions which results in the in-depth temperature of the body and consequently affects health, performance, and efficiency in individuals. Diseases related to heat including heat cramps, heat syncope, fatigue, heatstroke, heat faint and shock are mostly due to undesired effects of heat on human health. Such effects are also reported among work environments like ground mine workers, building workers and agriculture workers. There are many studies show that heat exposure may cause job injuries on workers. As well as heat diseases in work environments, working in such environments may increase the risk of job injuries and accidents.

In low and medium-income nations, reduction in efficiency is more expected due to weakness in providing desired environments to work in open and closed places. The short term extreme heat exposure (extreme exposure) can increase body depth temperature and it directly causes diseases related to heat such as slight heat rashes, muscular cramps, heat fatigue, and health-threatening heat shocks. Long term and chronic effects of heat exposure in work environments are also reported including cardiovascular diseases, effects on mental health and chronic kidney diseases. Statistics in Australia have shown that there are 485 disease and injury cases related to working in environments with heat exposure from 1997 to 2007. Hobler and his colleagues evaluated the effects of climate changes in Germany, results showed that temperature above 20°C reduces human efficiency 3% to 5% which this amount reaches to 75% in temperatures between 35°C to 37°C. Heat stress in the environment changes an individual’s cognitive performance through inconvenience, cognitive fatigue, agitation and faint in high temperature. Humans have two reactions in response to their inner temperature increase:

a) Behavioral responses for example reduction in physical activity, putting out clothes and distancing from the source of heat
b) Cognitive responses (reduction in focus and error increase).

Stubblefield and his colleagues have measured active hyperthermia effect resultant from a heat stress experiment on individuals’ four cognitive performances (working memory, attention, response speed, processing speed), findings revealed that hyperthermia reduces working memory performance, previous studies showed that response speed, processing speed, and attention are less influenced by the effects of body depth temperature. The conceptual distribution chart of human performance with different amounts of WBGT Index exposure demonstrates that higher than 25°C WBGT human’s working capacity reduced and in higher than 40°C WBGT will be difficult for everyone to have physical actions. However, the probability of injury happening in hot weather conditions is not obvious and it may cause a significant humane and economic cost when accompanying effects related to heat. In the US, the National Institute of Occupational Safety and Health (NIOSH) estimated that around 5 to 10 million workers work in hot weather conditions.

Estimating results of employing workers population in Iran open areas based on Iran’s Statistics Center was around 8550500 individuals in different occupations who are working in the open areas and are exposed to direct sunlight and effects of global warming. This information and statistics represent little information regarding the importance of this issue and also it seems that these statistics are related to injuries of heat such as falling and accident resultant form work. Therefore, the relational emergence of job accidents and injuries resultant from heat is obscure. Hence, the purpose of the current study is to review the previous studies in the field of job injuries and accidents in heat stress exposure in the working environment.

Methods

All English and Persian studies related to heat and resultant injuries systematically investigated in Iran Scopus, Magiran, Google Scholars, Pub Med, ScienceDirect, Web of Science, SID and Medex bases from 2000 to 2019. Keywords including ”heat stress”, ”heat strain”, “heat exposure”, “heat wave”, “heat injuries”, “job accident”, “job exposure”, “hot environment” and ”air changes” have been used to search. Also, the studies included in this study were:
- Authentic studies in English and Persian published from 2000 to 2019.
- Studies have investigated the relationship between heat and its resultant injuries and accidents

Exclusion criteria from the study were focusing only on resultant injuries from work due to heat exposure. Review studies, editorials, cover letters, presented articles in seminars and reports excluded from this study. Based on the study purpose the total number of 30 articles has been investigated. Study selection flow diagram is presented in Figure 1.

Results

Most of the investigated articles have been conducted in developed nations such as North America, Australia and tropical and less developed areas of Iran, India, and Thailand. Study articles consist of 96.6% occupational environments ($n = 29$) and 3.4% military environments ($n = 1$). Study occupations consist of 3.3% military forces ($n = 1$), 3.4% textile workers ($n = 1$), 3.4% aluminum smelting workers ($n = 1$), 6.6% mine workers ($n = 2$), 6.6% iron and metal industry workers ($n = 2$), 10% building workers ($n = 3$), 3.4% clean workers of oil reservoirs ($n = 1$), 13.3% agricultural workers ($n = 4$) and 50% other occupations ($n = 15$). Also about the study environment, 40% in open environment ($n = 12$), 23% in closed environment ($n = 7$) and 27% both in open and closed environments ($n = 11$). Used factors in this study consist of 23% minimum and maximum temperature ($n = 7$), 10% moisture index ($n = 3$), 10% air temperature ($n = 3$), 20% WBGT Index ($n = 6$) and 37% heat exposure as the risk factor ($n = 11$). Methods of evaluating the relationship between heat exposure variables and job accidents risk consist of 57% analytical study ($n = 17$), 10% correlational study ($n = 3$), 3.3% cohort study ($n = 1$), 10% cross-sectional study ($n = 3$), 10% case-crossover study ($n = 3$), 6.6% analytical-descriptive study ($n = 2$) and 3.3% descriptive study ($n = 1$). Cross-sectional, case-crossover and correlational studies consist of nonparametric regression models such as Generalized Estimating Equations (GEEs), Generalized Additive Model (GAM), Negative Bias Regression (NBR) and parametric regression models. Results showed that most job injuries and accidents happened during summer and men especially the young have involved in such problems and job injuries and accidents have increased due to extreme temperature increase. Generally, job injuries and accidents include burn, slip, collision with things and collision with mobile things. Usually, heat moistens the palms, steams goggles, decentralization, and dizziness which increase the number of accidents. The following table shows a summary of articles in explanation and kind of study and key results.
Table 1. A summary of articles including target workers, type and environment of study and key results

<table>
<thead>
<tr>
<th>Row</th>
<th>Target workers</th>
<th>Study type</th>
<th>Study environment</th>
<th>Stress index</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Different occupations workers</td>
<td>analytical</td>
<td>Open and closed</td>
<td>Heat exposure as a risk factor</td>
<td>Besides diseases resultant from working in hot environments, working in such environments may increase the risk of job injuries and accidents(^{(11)})</td>
</tr>
<tr>
<td>2</td>
<td>Building workers</td>
<td>cross-sectional survey</td>
<td>Open</td>
<td>Heat exposure as a risk factor</td>
<td>12.8% of workers have suffered from job injuries and accidents which 9.2% and 14.7% of them have occurred during summer and winter respectively. Workers with less than 36 months of working experience have experienced job injuries and accidents. Job injuries and accidents include slight cuttings, scratches, and slight injuries, breaking and falling(^{(1)})</td>
</tr>
<tr>
<td>3</td>
<td>Different occupations workers</td>
<td>analytical</td>
<td>Open and closed</td>
<td>Daily T(_{\text{max}})</td>
<td>Most accidents happened during the days with higher than 25°C(^{(1)})</td>
</tr>
<tr>
<td>4</td>
<td>Aluminum smelting workers</td>
<td>analytical</td>
<td>Closed</td>
<td>Hi-11 thermal categories Considered relative humidity</td>
<td>Workers have suffered from severe injuries exposing to heat. Happening of severe injuries in 33-38 and above 38 degrees centigrade equal with 2.28 and 3.52 odds ratio respectively(^{(19)})</td>
</tr>
<tr>
<td>5</td>
<td>Different occupations workers</td>
<td>analytical</td>
<td>Open and closed</td>
<td>Heat exposure as a risk factor</td>
<td>Usually, heat moistens the palms, steams goggles, decentralization, and dizziness which increases the number of accidents. An increase in body depth temperature has negative effects on the reduction of body water, negative effects on individuals' behavior such as physical fatigue, irritability, lethargy, incorrect judgment, conscience reduction, agility, concentration, and coordination reduction(^{(21)})</td>
</tr>
<tr>
<td>6</td>
<td>Different occupations workers</td>
<td>analytical</td>
<td>Open and closed</td>
<td>Heat exposure as a risk factor</td>
<td>Working in hot environments may increase the risk of job injuries and accidents(^{(2)})</td>
</tr>
<tr>
<td>7</td>
<td>Open occupations workers</td>
<td>Analytical descriptive</td>
<td>Open</td>
<td>WBGHT</td>
<td>The most percent of performance reduction observed in occupations with 500w consumed energy during July. The average difference in the percent of performance reduction of 500w occupations was statistically meaningful for environmental parameters such as air temperature(^{(22)})</td>
</tr>
<tr>
<td>8</td>
<td>Different occupations workers</td>
<td>Cohort study</td>
<td>Open and closed</td>
<td>Heat stress measure: "never", sometimes "and "often"</td>
<td>Increase in job injuries and accidents in hot environments for men and women equaled with 2.12 and 1.89 odds ration respectively. The prevalence of heat exposure injuries includes imbalance (24%) and falling (18%)(^{(23)})</td>
</tr>
<tr>
<td>9</td>
<td>Military forces</td>
<td>Correlation</td>
<td>Open</td>
<td>Average T(_{\text{max}}) and Minimal dry bulb temperature</td>
<td>Prevalence of injury and accident is higher during summer than fall. Men are more sensitive to heat exposure injuries and accidents. Correlation between Average T(_{\text{max}}) and time waste injuries and other injuries is 0.92 and 0.96 respectively(^{(32)})</td>
</tr>
<tr>
<td>10</td>
<td>Coal mine workers</td>
<td>analytical</td>
<td>Closed</td>
<td>Heat exposure as a risk factor</td>
<td>28.5% of job injuries and accidents happen due to heat exposure with a 1.35 odds ratio(^{(13)})</td>
</tr>
<tr>
<td>11</td>
<td>Different occupations workers</td>
<td>analytical</td>
<td>Open and closed</td>
<td>Heat exposure as a risk factor</td>
<td>61.8% of heat exposure cases have increased job injuries and accidents with 2.29 odds ratios(^{(14)})</td>
</tr>
<tr>
<td>12</td>
<td>Different occupations workers</td>
<td>Correlation</td>
<td>Open and closed</td>
<td>Daily T(_{\text{max}}) Considered relative humidity</td>
<td>There was a linear algorithm relationship between job injuries and accidents and heat. An increase in Daily T(_{\text{max}}) may increase labor compensation requests by up to 0.2%. Heat exposure job injuries and accidents include</td>
</tr>
<tr>
<td></td>
<td>Occupational Injuries in Work Environment’s Heat Stress : A Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Different occupations workers</td>
<td>cross-sectional</td>
<td>Heat exposure as a risk factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Textile industry workers</td>
<td>analytical</td>
<td>Heat exposure as a risk factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Metal and iron industry workers</td>
<td>cross-sectional study</td>
<td>Heat exposure as a risk factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Agriculture workers</td>
<td>Case-Crossover Study</td>
<td>Maximum daily humidex (HX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Different occupations workers</td>
<td>case-crossover study</td>
<td>Daily T_{max} and T_{min}, Included relative humidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open and closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Employing workers in a hot industry</td>
<td>analytical</td>
<td>WBGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Building workers</td>
<td>Analytical descriptive</td>
<td>Daily T_{max} Daily T_{min}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Rice farms workers</td>
<td>analytical</td>
<td>WBGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Metal and iron industry workers</td>
<td>analytical</td>
<td>Heat exposure as a risk factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

25.9% of workers have suffered from job injuries and accidents have exposed to heat. Job injuries and accidents include burn (54.1%), slipping (44.3%), collision with things (27.8%) and collision with mobile things (10.3%). 25.2% of workers have witnessed that their colleagues suffered from job injuries and accidents when working in hot environments including falling and slipping (55%) and burn (42.3%).

The prevalence of accidents has significantly increased during the summer months.

In environments with more than 33 HX Index, the risk of happening traumatic accidents and injuries increases. Traumatic injury in environments with 25-29, 30-33 and more than 33 HX Index concerning ≤ 25 HX Index have increased with 1.14, 1.15 and 1.01 odds ration respectively. The most traumatic injuries have observed during June-July among cherry harvesters.

There was a positive relationship between temperature degree and injury. There was no linear relationship between T_{max} and injuries and their relationship is a curved shaped one. Vulnerable workers include young workers, men, and workers with high physical demands.

There was not a meaningful relation between test duration, reaction time and error numbers in 1 and 2 Stroop tests but the above-mentioned variables have a direct and meaningful relationship with heat in Stroop test 3. Test duration, reaction time and error numbers in Stroop test 3 (heat exposure group) were meaningfully higher than heat non-exposure.

There was no meaningful relationship between accidents and almost hot environments. The cost of big accidents for workers older than 55 years old was more than new workers during heat exposure. Vulnerable groups in this study include experienced workers, male workers, workers between 35 to 55 years old, workers of small and medium industries and workers employed in carpentry, electricity, mechanics and setting operator.

Heat may influence performance reduction, safety, and efficiency and reduce efficiency and increase in the accidents among agriculture workers.

98 out of 217 workers who have exposed to heat (77.2%) have experienced job injuries and accidents. There was a meaningful relationship between work environment temperature and job injuries and accidents.

(X2 = 33.97, df = 1, P<0.0001)
Discussion

The purpose of the present study is to investigate previous studies in the field of heat stress in different countries regarding job injuries and accidents in work environments heat exposure. Heat as a vital factor has gained considerable attention for a long time ago. Heat in industries is considered a harmful factor with an energy source in production processes and it may harm workers’ health. Heat is an undeniable danger in work environments, especially in developing nations. Global weather has lost its balance during the 20th century especially within two recent decades and it is inclined to temperature increase. However, predictions for the 21st century alarmed global temperature increase due to greenhouse gases increase. The magnitude of predicted temperature increase to 4.5°C until the end of the present century may potentially cause problems. In this way, heat exposure creates job injuries and accidents for workers in open and closed environments. 14-26% of the studies have...
conducted in closed environments including iron and metal industry, aluminum smelting, mine and textile, workers in closed environments with unsuitable air conditioning are exposed to the risk of heat injuries and accidents; this risk increases in environments with ovens, hot machines, melting metals and furnaces due to reflected radiances and radiant temperature increase.

Nag and his colleagues have conducted a study in the textile industry, the results showed that accidents prevalence have considerably increased during summer months. Chau and his colleagues showed that 28.5% of job injuries and accidents were related to heat exposure with 1.35 odds ratio. Results of the studies conducted in iron and metal industry workshops showed that the prevalence of job injuries and accidents was 18.7% more among the workers have exposed to heat rather than those who haven exposed to heat. There was a meaningful relationship between work environments temperature and job injuries and accidents and underground miners’ physiological and perceptual responses were meaningfully influenced under heat. 23% of the studies have been conducted in open environments including construction, military forces, forestry, fisheye, water, electricity, gas industries, agriculture and farms, these types of workers are exposed to direct sunlight and extreme heat while working in the open air during hot seasons. Besides unsuitable atmospheric conditions, heavy body activity and resultant heat from production mechanisms contain 80% of resultant heat from body activity and mechanisms and 20% of received heat from the environment. Study results out of open environments revealed that workers with less than 36 months working experiences were more intended to job injuries and accidents in summer, prevalence of injuries and accidents is more in summer than in fall and men are more vulnerable to such injuries and accidents in summer. Also, labor compensation request 6.2% increased for workers who work in hot open environments and suffered from job injuries and accidents. 25.9% of workers who have suffered from job injuries and accidents have been exposed to heat and work in higher than 33 HX Index environments, the risk of traumatic injuries and accidents has increased and per percent increase in WBGT causes 13% increase in extreme accidents and injuries. There was not a meaningful relationship between accidents and hot environments; usually heat moistens the palms due to sweating, steams the goggles, reduces focus and causes dizziness that all of them have increased the number of accidents. Also, heat may influence on reduction of performance, safety and efficiency and performance reduces and accidents increase among workers who are exposed to heat.

Working in hot environments may increase the risk of job injuries and accidents and parameters of test duration, reaction time and number of errors in Stroop test was meaningfully higher in exposure group (heat exposure) than non-exposure one and most of the accidents have happened in days with temperature above 25°C. 13.3% of studies conducted on farmers and agriculture workers, agriculture is among the oldest productive industries and the most important economic activity. Farmers suffer from undesired effects of heat stress due to working in open environments. Since agricultural activities are conducted in hot seasons of the year, so heat stress is one of the factors which influences on health, safety, and efficiency of the workers. Accordingly, agricultural activity is one of the activities with the highest risk of heat injuries and accidents. In the absence of safety and occupational health plan for protection, farmers are exposed to long term extreme heat. The agriculture industry has third ranking in death due to heat in America and death in this industry is 20 times more than non-military forces. 6.6% of the studies conducted on mine workers, working in hot environments of mine is so common. Heat exposure in open mines is similar to open environments but underground mines dependent on depth increase and resultant heat from untouched rocks, have caused heat stress problems.

Usually, heat moistens the palms, steams goggles, decentralization, and dizziness which increase the number of accidents. Increase in body depth temperature has negative effects on reduction of body water, negative effects on individuals’ behavior such as physical fatigue, irritability, lethargy, incorrect judgment, conscience reduction, agility, concentration, and coordination reduction which influence on performance reduction, safety, and efficiency. Fogelman and his colleagues (2005) have studied aluminum smelting factory, the results showed that individuals who work in hot environments with a heat index above 32°C and suffer from heat injuries have 2.3 odds ratio. Morabito and his colleagues (2006) studied hospitalized patients in hospital, the results showed that the most number of accidents have occurred in days that individuals were working in so hot environments in this way Xiang and his colleagues (2014) have studied the relationship between hot environments and...
accidents from 2001 to 2010 and argued that those who work in hot environments suffer from mental judgment and memory deficiency. Also, sufficient information to estimate work accidents have not been mentioned. This study showed that a per cent increase in temperature may cause at most 0.2 per cent increase in injured workers’ complaints to 37°C and then injury danger has significantly reduced.

In both conducted studies in Adelaide and Quebec, vulnerable groups have been identified including men, young workers (less than 24), open environment workers, occupation and industry workers, intermediaries and small and medium workers. Also, McIntee and his colleagues have shown that there is more risk in female workers and young workers (25 to 32) and elderly workers (55 and above) who have requested physical activity and exposed to heat. Results showed that days with 32 to 37 degrees of the centigrade increase the risk of accidents to 8.2% and days with more than 37°C the risk of accidents has increased by 50%. In temperatures between 15 to 21 degrees of centigrade injuries and accidents have increased by 4% and 30% respectively. Several results studies by Spector and his colleagues (2016), Hilles (2012) and Garson and his colleagues (2016) utilizing Humidex and WBGT Indices showed that in higher temperatures the risk of injuries has increased. A study conducted among military personnel showed that the prevalence of injuries is higher in summer than in fall and dose relationship between emergence and average of maximum daily temperature was observed. Concluding studies in India, France, and Australia showed that injury prevalence has increased from 9.2% to 49% among workers who are exposed to high temperatures. Moreover, a large scale cohort national study conducted on 58495 individuals in Thailand and results showed that there is a strong relationship between heat stress and job accidents. In this study, heat stress observed in 20% of workers who have more chance in their job accidents. Surprisingly, variables such as age, income, education, disease, alcohol consumption, smoking state, sleeping hours, place and type of work have been confirmed.

The heatwave is a long term hot weather that may contain high moisture. This expression is referred to as heat routine weather changes and also heat extraordinary changes that may happen once in a decade. A study conducted in Southern Adelaide, results showed that there is a meaningful relationship between heat wave and workers’ complaints and also there is a direct relationship between Daily T_{max} and job accidents complaint. Job injuries and accidents have increased by 0.2% per increase in the T_{max} degree of centigrade until 37.7°C and severe injuries such as wounds, lacerations, amputation, and burn are relayed to heat waves. A cross-sectional study in Adelaide on building workers showed that the severity of work accidents and injuries depends on workers’ characteristics, type of work, work environment and direct cause of the injury. They reported that during these periods, building engineering workers, elderly workers and those who work in small companies are more exposed to the risk of severe accidents. In some studies, the risk of injuries including “slipping, stumbling and falling”, “harfmal substances exposure”, “collision with things and equipment”, “hitting things”, “sharp points”, “wound”, “explosion”, “burn”, “scratch”, “collision with mobile things”, “breaking” increase due to heat exposure. Although it has not been investigated how heat exposure may exacerbate the risk of physical injuries. However, studies revealed that injuries may be a minor or secondary result of heat-related disease or it may be due to physiological, psychological, personal and organizational (related to work) factors. To understand physiological factors, it is important to know how the body retains its thermal balance and how it reacts in hot environments.

Human as a warm-blooded creature has an internal temperature between 5.36°C to 37°C and 32°C skin temperature. Body temperature may change daily or hourly, but these changes are not more than one centigrade degree, as the human body can regulate body internal temperature through two nervous and hormone control systems. Hypothalamus in the brain regulates body internal temperature through radiation, transmission, guidance and sweat evaporation. When the body temperature regulation system is not able to tolerate environment temperature, serious dangers threaten humans’ health and body temperature reaches above 39°C and extreme heatstroke may happen. The human body supplies its thermal energy through the consumption of daily meals. Also, environmental resources including high temperature, high relative moisture, absence of airflow, sun radiation and hot sources and surfaces influence energy production in the body. Physical heat exposure injuries on the human body are compatible with human’s ability to regulate internal temperature as blood circulation in the skin has the most effect on controlling body internal temperature and if it doesn’t work well, body internal temperature increases and
makes human heat exposure effects. And due to the
reduction in blood circulation amount in the brain, the
human feels dizziness and unconsciousness.61 In higher
temperatures, due to more sweating a large amount of water,
salt, and free electrolytes remove from the body which leads
to heat cramps due to dehydration and electrolyte
imbalance.62 These effects may influence body temperature
regulation systems and create heat exposure symptoms in the
body. Symptoms progress may influence workers’ ability and
increase job accidents17 which is due to a reduction in
cognitive performance and perceptual-movement skills in the
human brain.66-69 Physiological effects which workers
experience in hot environments may cognitively increase
hazardous behaviors in work environments which eventually
increase job injuries and accidents. Humans’ attention and
concentration are reduced in hot environments and lead to
unsafe behaviors. Surprisingly, cognitive reactions reduction
begins with a slight increase in body temperature and
reduction inability to do tasks and performance in individuals
before the incidence of a heat-related disease is predictable.90
Also, organizational and personal behavioral factors may lead to injuries. These are including not using
personal safety equipment due to heat and moistening of the
palms, reduction in hand grasp and eyesight problems due to
sweating. Other influential factors maybe insufficiency in
protective covering and absence of supervision and education
in prevention from heat stress.8,11,13,16 Although there are
reports about heat exposure job injuries, obvious
mechanisms are not still determined which necessitate more
studies in the future. Study results show that cognitive and
physical performance may be influenced by extreme heat.
There is a probability in the occurrence of unsafe behaviors
which leads to injuries and accidents. Activities like
judgment, concentration, coordination, resistance, power,
eyeight, and convenience are under the influence of
physiological changes due to heat and body dehydration.70,71
Many other studies have tried to predict another list of factors
which may someone be more exposed to environmental
dangers. These factors include palms moistening, steamed
safety goggles, random contact with hot surfaces, physical
activities, absence of practice and skill, unsuitable heat
regulation mechanism due to age increase, using unsuitable
personal safety devices, work environment stresses, weak
dehydration behaviors.13,41,48 20% of studies conducted
utilizing WBG T Index which demonstrates Wet Bulb Globe
Temperature (WBG T) to evaluate work environment heat
pressure, this index has been selected as the main
representative in establishment of legal threshold amounts
due to easiness in measurement method and also close
relationship with corrected effective temperature from the
experts’ national association of America industrial health.
Health National Studies and Occupational Safety Center
and International Standard Organization (ISO) have
suggested it as the standard index; Wet Bulb Globe
Temperature (WBG T) is so simple and measures the least
atmospheric factors. This index is based on measuring
natural wet and dry temperature.61 Less exposure to heat by
proper performing of engineering and management strategies
may reduce the number of accidents and injuries in work
environments. Several instructions and recommendations
have introduced by different health and occupational groups
and governmental officials for workers.41 However, there is
less focus on prevention from heat exposure injuries in
medium heat work environments rather than extreme heat
ones. Therefore, changes in safety policies and occupational
health and educational programming based on evidence are
necessary for workers and supervisors. Since articles
investigation has been conducted in several databases and
utilizing some related keywords, though there may be some
other studies which persuaded the reverse relationship
between heat and job injuries and accidents not included into
the present study, however researchers have tried to study the
whole articles which have been conducted in Iran and other
foreign countries. It is recommended to conduct studies
considering job type, level of physical activity (light, medium, heavy) and individuals’ features to determine the
exact effect of heat on work environment injuries and
accidents. Especially, according to the predictions about
increasing Earth’s temperature between 1 to 5 centigrade
degrees until 2070 (depending on greenhouse gases) the risk
of heat exposure injuries may increase for those who work
outdoors. Also, heat delayed effects on humans have to be
studied because injuries may potentially don’t happen on the
same day of heat exposure. Also, it is recommended to
conduct studies about the economic effects of heat exposure
injuries and accidents and their health costs.

Conclusion
The present study represents evidence based on hot
environments dangers and direct and indirect factors in job
injuries and accidents that necessities purposeful
interventions and working policies along with preventive
strategies. Results study shows that there is a strong relationship between temperature in the open air and an increase in the risk of work environment injuries and accidents which differ based on employees’ features (such as age, gender, occupation, and industry). However, dominant mechanisms on these injuries are having not been determined yet. According to global warming which leads to air temperature increase and creation of hot days, the number of accidents, job injuries and efficiency harms are expected to be increased and its effect may be reduced through compatibility with specific behaviors and controlling work among industries and workers with vulnerable occupations. More studies are needed to determine specific injuries and incidence of injuries in hot work environments. Policymakers and employers have to be more aware of heat exposure injuries and accidents and proper educational resources have to be prepared to prevent such injuries.

References

22. Luo H, Turner LR, Hurst C, Mai H, Zhang Y, Tong S. Exposure to...

70. Kenefick RW, Sawka MN. Hydration at the work site. The american college of nutrition. 2007;26(sup5):597S-603S.

71. Murray B. Hydration and physical performance. The american college of nutrition. 2007;26(sup5):542S-8S.