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Abstract 
 

Background: Breast cancer is the most common malignancy worldwide. Doxorubicin 
is an anthracycline used to treat breast cancer as the first treatment choice. Never-
theless, the molecular mechanisms underlying the response to Doxorubicin and its side 
effects are not comprehensively understood so far. We used systems biology and bio-
informatics methods to identify essential genes and molecular mechanisms behind the 
body response to Doxorubicin and its side effects in breast cancer patients.  
 

Methods: Omics data were extracted and analyzed to construct the protein-protein 
interaction and gene regulatory networks. Network analysis was performed to iden-
tify hubs, bottlenecks, clusters, and regulatory motifs to evaluate crucial genes and 
molecular mechanisms behind the body response to Doxorubicin and its side effects.  
 

Results: Analyzing the constructed PPI and gene-TF-miRNA regulatory network 
showed that MCM3, MCM10, and TP53 are key hub-bottlenecks and seed proteins. 
Enrichment analysis also revealed cell cycle, TP53 signaling, Forkhead box O (FoxO) 
signaling, and viral carcinogenesis as essential pathways in response to this drug. Be-
sides, SNARE interactions in vesicular transport and neurotrophin signaling were iden-
tified as pathways related to the side effects of Doxorubicin. The apoptosis in-duction, 
DNA repair, invasion inhibition, metastasis, and DNA replication are sug-gested as 
critical molecular mechanisms underlying Doxorubicin anti-cancer effect. SNARE in-
teractions in vesicular transport and neurotrophin signaling and FoxO signaling path-
ways in glucose metabolism are probably the mechanisms responsible for side effects 
of Doxorubicin.  
 

Conclusion: Following our model validation using the existing experimental data, we 
recommend our other newly predicted biomarkers and pathways as possible mole-
cular mechanisms and side effects underlying the response to Doxorubicin in breast 
cancer requiring further investigations. 
 
 
Keywords: Breast cancer, Doxorubicin, Protein-protein interaction network, Regulatory motif, 
Systems biology 

 

 

 

Introduction 
 

Breast cancer is the most common cause of cancer 

and mortality caused by cancers in women worldwide 
1. Four subtypes of this cancer include luminal A and 

luminal B [expressing the Estrogen Receptor (ER)], 

basal-like, and Human Epidermal growth factor Recep-

tor 2 (HER2)-enriched (without ER expression). This 

cancer is a heterogeneous disease at the molecular lev- 
 

 

 

 

 

el. The characterization influence biologically-directed 

therapies and treatment de-escalation 2. Breast cancer is 

often curable early, but the metastatic form is almost 

mortal due to therapeutic resistance 3. The estrogen 

hormone and its receptor play essential roles in breast 

cancer progression. The dysregulation of the Estrogen 

Receptor (ER) is attributed to two-thirds of all breast 
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cancers. The ER receptor is one of the therapeutic tar-

gets for ER+ breast cancer 4. In clinical diagnosis, 75% 

of breast tumors are ER+ 5; however, the role of ER 

signaling in metastasis of breast cancer remains poorly 

understood. Several studies have shown an adverse 

effect of ER signaling on motility and invasion of cells 
6,7, while a few studies suggested a positive effect of 

ER signaling on motility and invasion 8,9. 

Doxorubicin (DXR) is an anthracycline and chemo-

therapeutic drug isolated from Streptomyces peucetius 
10. This drug is used to treat several cancers, including 

breast, gastric, lung, ovarian, thyroid, sarcoma, non-

Hodgkins and Hodgkins lymphoma, multiple myelo-

ma, and pediatric cancers 11,12. DXR induces Reactive 

Oxygen Species release (ROS) that ROS lead to DNA 

damage, lipid peroxidation and membrane damage, and 

apoptotic cell death pathways 13. DXR is among the 

chemotherapy drugs approved to treat ER+breast can-

cer. The response rates to DXR in patients exposed to 

DXR for the first time is reported to be 48%, and for 

more than once is 28% 14.  Nevertheless, little is known 

about the molecular basis of its effect on cell pro-

liferation, estrogen/estrogen receptor signaling, and 

cell cycle progression 15-17. Some investigations have 

even reported cardiotoxic side effects for DXR that 

their molecular mechanisms remain to be deciphered in 

detail 18.  

Systems biology and network-based methods are re-

cently used to decipher the molecular mechanisms be-

hind drugs and their possible side effects. Several such 

studies rely on network topology analysis to identify 

the effect of chemotherapy on various cancers. These 

networks can help understand how drugs influence the 

disease at the molecular level and identify the crucial 

gene sets underlying various drug effects 19-22. Several 

network analysis studies of drug-disease associations 

have been used to predict drug side effects with high 

accuracy. Global expression data-based computational 

approaches can utilize gene interaction information for 

modeling Protein-Protein Interaction Networks (PPINs) 

and Gene Regulatory Networks (GRNs). 

Identifying network modules and their biological 

functions helps decipher the molecular mechanisms of 

drug effects, identify new drug targets, predict body 

response to drugs, and organism behavior 23-25. Gene 

regulatory networks contain information about regula-

tory elements of gene expression. These networks can 

identify regulatory programs and help understand the 

molecular basis of drug pharmacodynamics and even 

pharmacogenetics 26. In 2020, a study analyzed the 

gene regulatory network of breast cancer and identified 

gene-specific personalized drug treatments 27. Rao 

Zheng et al also constructed a gene regulatory network 

of diabetic nephropathy; they recognized essential 

genes using this method. These findings provide targets 

for drug development 28. Adel Aloraini et al, in 2018, 

performed the identification of breast anti-cancer 

Docetaxel drug targets (DAXX and FGR1) using anal-

ysis of gene regulatory network and molecular docking 
29. 

Molecular mechanisms mediating in breast cancer 

treatment by DXR and the mechanisms underlying its 

side effects are not still comprehensively understood. 

Therefore, in this study, we used protein-protein inter-

action and gene regulatory networks to identify essen-

tial molecular mechanisms and biological functions in 

response to DXR and the molecular mechanisms re-

sponsible for its side effects. We utilize a systems biol-

ogy approach and bioinformatics analysis of protein-

protein interaction network and Gene Regulatory Net-

works (GRNs) on omics data of breast cancer treatment 

using the DXR chemotherapeutic agents. Here, we 

utilize the protein-protein interaction modules and gene 

regulatory network motifs to predict and identify drug 

targets, Gene Ontology (GO) and biochemical path-

ways mediating in response to ER+ breast cancer and 

mechanisms underlying its side effects. 

 
Materials and Methods 

 

Data collection 
Datasets on breast cancer (MCF-7 cell)/DXR were 

searched and collected from the Gene Expression Om-

nibus (GEO) database (http://www.ncbi.nlm.nih.gov/ 

geo/) and proteomic publications 30,31. Three datasets 

(GSE124597 (GPL 15207), GSE39870 (GPL 571), and 

GSE13477 (GPL 570) were selected to compare breast 

cancer (MCF-7 cell line)/DXR and non-treatment 

breast cancer (MCF-7 cell line) for analysis in this 

study. Figure 1 shows the workflow of this study. 
 

Raw data processing and Data analysis  
The datasets' Differentially Expressed Genes 

(DEGs) were analyzed and identified using GEO2R 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/), which nor-

malized the data using the GEO query and limma R 

package. The differentially expressed genes were iden-

Figure 1. Study workflow. 

https://pubmed.ncbi.nlm.nih.gov/?term=Aloraini+A&cauthor_id=29449773
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tified according to p-value<0.05 and Fold Change cut-

off of >0.5 and <-0.5 as a threshold. The genes ob-

tained from the three datasets and proteomic publica-

tions (mass spectroscopy on MCF-7 treated compared 

to untreated) were used for further analysis. 
 

Protein-protein interaction network construction 
The shared DEGs between the three GSE datasets 

were obtained using the Venn diagram Tool 32 and un-

ioned with DEGs data extracted from proteomic publi-

cations. We applied the STRING (Search Tool for the 

Retrieval of Interacting Genes/Proteins, https://string-

db.org) with a  confidence score of more than 0.7 and 

Bisogenet app [Human Protein Reference Database 

(HPRD)] to map the interactions of DEGs obtained 

from the shared bodes among the three GSE DEGs and 

unioned with proteomic publications. STRING is a 

biological database of known and predicted protein-

protein interaction (physical and functional) for many 

organisms 33. Bisogenet could build a relation between 

genes and their products in a fast and user-friendly 

manner and has multiple applications, including ge-

nomics information, protein-protein interactions, pro-

tein-DNA interactions, and gene ontology 34. Bisogenet 

is available in Cytoscape software. 
 

Topological network analysis 
The PPI networks obtained from STRING and Bi-

sogenet app were merged using Cytoscape software to 

analyze the interactions and connections between pro-

teins (http://www.cytoscape.org/). Cytoscape software 

in bioinformatics for visualizing biomolecular interac-

tion networks (protein-protein, protein-DNA, and ge-

netics interactions) was available for humans and mod-

el organisms 35.  

This software contains several plugins for functional 

analysis in PPI networks. Cytoscape network analyzer 

is a tool that determines the degree and betweenness-

centrality of every node as the hub and bottleneck 

genes. The hubs are node proteins with many interac-

tions, and bottlenecks are nodes with high betweenness 

centrality 35,36. Finding PPIN hubs and bottlenecks is 

used to candidate drug targets when drug designing. 

Besides, it is used to candidate possible disease mark-

ers 37,38. We selected the top 10% of nodes with a high-

er degree and betweenness as hub-bottlenecks for fur-

ther analysis. 
 

Molecular complex detection (MCODE) cluster sub-

networks  
The STRING and Bisogenet PPI (HPRD database) 

networks were merged, and the resulted network was 

used to identify clusters using the MCODE Plug-in. 

The MCODE algorithm, one of the Cytoscape plugins, 

was used to identify highly interconnected sub-net-

works with parameter settings, including Degree Cut-

off=2, Node Score Cutoff=0.2, K-Core=2, and Max-

Depth=100 39. We considered the MCODE score>3 

and the number of nodes>10 as the final clusters' cut-

off criteria.   
 

Functional enrichment analysis for hub-bottlenecks and 

MCODE clusters 
The enrichment analysis for Biological process, mo-

lecular function, and cellular component and KEGG 

biochemical pathways (Kyoto Encyclopedia of Genes 

and Genomes) were performed for the top 10% of the 

hub and bottleneck genes using the DAVID Tool (Da-

tabase for Annotation, Visualization, and Integrated 

Discovery; https://david.ncifcrf.gov/). DAVID is a bio-

informatics resource for functional interpretation of a 

list of genes and can identify GO terms and visualize 

genes on the KEGG pathway 40. The functional en-

richment analysis was then performed for pathways of 

the sub-networks using the STRING database. For the 

enrichment analysis, STRING uses known systems 

such as Gene Ontology and KEGG 41.  
 

TF-miRNA-gene regulatory networks Construction (for UP 

and down-regulated DEGs) 
The up and down-regulated DEGs among the three 

GSE datasets were identified separately using Venn 

diagram Tool 32. The identified shared DEGs were un-

ioned with up- and down-regulated proteins retrieved 

from proteomic publications results, separately. These 

up- and down-regulated genes were finally used to 

construct two separate regulatory networks for up- and 

down-regulated DEGs. The four relationships, includ-

ing TF-gene, TF-miR, miR-gene, miR-TF, were ex-

tracted using the following tools and database to con-

struct two gene regulatory networks for the gene sets. 
 

MiRNAs regulating DEGs  
The miRTarBase (http://miRTarBase.mbc.nctu.edu. 

tw/) and miRecords (http://c1.accurascience.com/mi-

Records/) databases were used for identifying miRNAs 

regulating genes and transcription factors. MiRecords 

is a database of experimentally validated miRNA-

target interaction 42. Besides, miRTarBase is a curated 

database of experimentally validated miRNA targets 

with high quality, and its miRNA-target interactions 

data are collected by receptor assay, microarray, next-

generation sequencing, and western blot 43. 
 

Transcription factors regulating DEGs 
The TFs regulating our target genes were extracted 

from the TRANSFAC (TRANScription FACtor; https: 

//genexplain.com/transfac/) and TRRUST databases 

(transcriptional regulatory relationships unravelled by 

sentence-based text-mining; https://www.grnpedia.org/ 

trrust/). TRANSFAC is a database of eukaryotic tran-

scription factors and their experimentally-proven bind-

ing sites 44. TRRUST is a curated database of human 

and mouse transcriptional regulatory networks, includ-

ing 8444 TF-target interactions for 800 TFs in humans 

and 6552 regulatory interactions for 828 mouse TFs 45. 
 

miRNAs inhibiting TFs  
The TFs regulating our target genes were fed into 

the miRTarBase and miRecords databases to obtain 

miRNAs targeting TFs. 
 

 

https://david.ncifcrf.gov/


14
0 

Regulatory Motifs in Doxorubicin Effects 

Avicenna Journal of Medical Biotechnology, Vol. 14, No. 2, April-June 2022     140 

TFs regulating miRNAs  
For identifying TFs regulating miRNAs, we used 

the TransmiR database (http://www.cuilab.cn/trans-

mir). This database contains 3730 TF-miRNA regula-

tions among 19 species from 1349 reports manually 

curated by surveying >8000 publications and more 

than 1.7 million tissue-specific. TF-miRNA regulations 

incorporated based on ChIP-seq data 46.  
 

Network construction, motif detection and motif specific 

sub-networks generation  
In a gene regulatory network, network motifs are 

composed of nodes and regulations that connect the 

nodes. Some of these regulatory interaction patterns 

may be significantly high in some networks 47. The 

molecular interactions of motifs are necessary to un-

derstand each motif's biological function 48. To find the 

regulatory motifs in up-regulated and down-regulated 

gene networks, we used FANMOD software. The regu-

latory relationships (TF-miRNA, TF-Gene, miRNA-

Gene, and miRNA-TF) were fed into the FANMOD to 

identify the motifs with three nodes. FANMOD is a 

tool for network motifs detection with detection motifs 

in a big network and analyzes colored networks 49. This 

tool was used to build random networks 1000 times 

and compared it with the original input network. When 

randomizing the network in a constant global model, 

they indicate the frequency of motifs observed in the 

real network minus the mean of their occurrence in the 

random network divided by the standard deviation. The 

motifs with Z-score>2.0 and p-value <0.05 were se-

lected as the significant motifs. TFs, genes and miR-

NAs participating in each motif were detected. The 

motif-related sub-networks of the up- and down-regu-

lated DEGs were then merged (union) in Cytoscape 

software 3.5.1, separately. Finally, the top 10% of 

nodes with the highest degree (hub) and betweenness 

centrality (bottlenecks) were identified in the new net-

works, separately. 
 

Functional enrichment analysis of GRN  
The up- and down-regulated DEGs of motif-related 

sub-networks were selected for functional enrichment 

analysis. The sets of DEGs participating in the union of 

the up- and down-regulated motif-related sub-networks 

were enriched by the DAVID Tool. The GO terms with 

p-value <0.05 were selected as significant. 
 

Results 
 

Raw data gathering and analysis 
A total of 320 DEGs, including 126 up- and 194 

down-regulated genes, were retrieved after analysing 

the datasets (GSE124597, GSE39870, and GSE1347) 

and collecting proteomics publications data. Supple-

mentary figure 1 shows the resulted Venn diagram. 

Supplementary table S1 represents all the up- and 

down-regulated DEGs 
 

Construction of PPI network  
The PPI network was constructed for DEGs using 

STRING and Bisogenet app (HPRD database) for map-

ping interactions and then merging. The resulted net-

work consisted of 320 nodes and 2519 edges.  
 

Topological analysis 
The network analyzer tool was used to study the 

topological network properties and identify the crucial 

hub and bottleneck nodes. The topological network 

properties included the clustering coefficient of 0.385, 

the shortest path of 60362, network density of 0.045, 

and diameter of 7. Figure 2 represents a sub-network 

including the 10% of the genes with the highest degree 

and betweenness centrality as hubs and bottlenecks, 

respectively. The top ten hubs and bottlenecks are 

listed in table 1. The list of 10% of the genes with the 

highest degree and betweenness centrality are reported 

in Supplementary table S2. 
 

Module detection 
Further analysis of complexes by MCODE app in 

Cytoscape software revealed 13 sub-networks. The PPI 

sub-networks are highly connected regions of the net-

work. Three sub-networks were selected according to 

score>3 and nodes>10 (Table 2, Figure 3). The seed- 
 

Figure 2. Protein-protein interaction network. The sub-network con-
structed by Cytoscape software encompasses 10% of hubs and bot-

tlenecks. The nodes' size and color are based on their degree value, 

and Nodes with dark color (red) have the highest degree. 

Table 1. Hub genes related to the breast cancer-doxorubicin network 
obtained from Cytoscape software 

 

Name genes Degree Betweenness centrality 

CDK1 111 0.06099772 

TP53 105 0.29304896 

CCNB1 82 0.03575425 

CCNA2 78 0.01470353 

CDC20 76 0.01682273 

BUB1 73 0.0130227 

PLK1 72 0.02161398 

CCNB2 71 0.00729474 

NDC80 71 0.00428032 

CDC6 70 0.014245 
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nodes of these sub-networks included MCM10 (Mini-

chromosome Maintenance 10 Replication Initiation 

Factor) for sub-network No.1, MCM3 (Minichromo-

some Maintenance 3 Replication Initiation Factor) for 

sub-network No.2, and NAPRT (Nicotinate Phosphori-

bosyltransferase) for sub-network No.3. The results are 

depicted in table 3. The nodes related to sub-networks 

are shown in Supplementary table S3. 
 

Gene ontology and KEGG pathway enrichment  
We performed Gene Ontology analyses for 10% of 

hubs and bottleneck genes using the DAVID database. 

Table 4 shows the resulting gene ontology terms. Bio-

logical process terms reveal that most of the hub genes 

participate in regulating the cell cycle. The top 10 re-

lated molecular functions identified using the DAVID 

database mediated in protein binding, nucleic acid-

binding, etc. The cellular component terms showed that 

most hub genes were present in the cytoskeleton, chro-

mosomes, etc.  

The DAVID database's KEGG pathway analysis 

demonstrated that hub and bottleneck genes were in-

volved in the cell cycle, Tumor protein 53 (Tp53) sig-

naling pathway, viral carcinogenesis, viral infections, 

Forkhead box O (FoxO) signaling pathway, and adher-

ent junctions. Besides, the KEGG pathway analysis 

showed that SNARE interactions in vesicular transport 

and neurotrophin signaling pathway were of a signifi-

cant p-value in enrichment. They could be hypothe-

sized and studied as a signaling possibly related to 

some side effects of DXR. Table 4 contains the top 

results of the KEGG pathway analysis by the DAVID 

database. Supplementary table S4 contains all gene 

ontology and pathways data related to 10% hub and 

bottleneck genes. 

The top pathway terms significantly enriched in 

sub-network No.1 included the cell cycle, p53 signal-

ing pathway, viral carcinogenesis, FoxO signaling 

pathway, and DNA replication. Biochemical pathways 

involved in sub-network No.2 included cell cycle and 

DNA replication. The nodes in sub-network No.3 were 

related to viral carcinogenesis (Table 3). 
 

TF-miRNA-gene regulatory network construction 
Identification of miRNA-gene/TF and TF-miRNA/gene 

interactions: In this study, miRNAs regulating post-

transcriptional mRNAs were retrieved from the two 

experimentally validated databases, including miRTar-

Base and miRecords. The up-regulated genes obtained 

from three GSE and proteomics data were targeted 

with 1082 miRNAs through 2103 interaction, and the 

transcription factors regulating genes were identified 

using TRANSFAC and TRRUST databases. The re-

sults revealed that 227 TFs regulated the target genes 

through 1088 interactions. The number of 1444 miR-

NAs targeted 152 TFs with 5979 interactions. TFs reg-

ulating miRNAs identified by the validated data of the  
 

Table 2. The PPI sub-networks with Score>3 and nodes>10. 
 

Sub-

networks 
Score 

Density 

nodes 

Number of 

Interactions 

Seed 

node 

1 40.227 45 916 MCM10 

2 7 15 52 MCM3 

3 4.941 18 43 NAPRT 

 

 

Figure 3. The PPI sub-networks based on highly connected-regions. 
Sub-networks 1, 2, and 3 were selected based on Score>3 and 

nodes> 10. Yellow rectangles represent seed nodes. 

Table 3. KEGG pathway analysis of sub-networks. 
 

KEGG ID Terms p-value Genes 

Sub-network 1    

hsa04110 Cell cycle 1.17E-22 PLK1, TTK, CDC6, CCNA2, CDC20, CCNB2, … 

hsa04115 p53 signaling pathway 1.78E-05 CCNB2, CCNB1, CHEK1, CDK1, GTSE1 

hsa05203 Viral carcinogenesis 0.013025793 CCNA2, CDC20, CHEK1, CDK1 

hsa04068 FoxO signaling  pathway 0.042317087 CCNB2, CCNB1, PLK1 

Sub-network 2    

hsa04110 Cell cycle 1.90E-04 MCM7, ORC1, MCM3, BUB3 

hsa03030 DNA replication 5.50E-04 MCM7, PRIM1, MCM3 

Sub-network 3    

hsa05203 Viral carcinogenesis 0.040723 C3, GTF2A1, MAPK1 
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TransmiR database revealed 356 TFs regulated 323 

miRNAs with 2011 interactions.  

The 194 down-regulated genes obtained from the 

three GSE datasets and proteomics data were regulated 

by 1027 miRNAs and 209 TFs through 2457 and 1458 

interactions. The number of 1451 miRNAs targeted 

133 TFs with 5862 interactions. The analysis of TFs 

regulating miRNAs by TransmiR revealed that 354 

TFs regulated 320 miRNAs with 2008 interactions 

obtained from experimentally validated data. Finally, 

the miRNA-gene, TF-Gene, miR-TF, and TF-miR in-

teractions were incorporated to construct two regulato-

ry networks in Cytoscape. The results are shown in 

table 5. Supplementary table S5 and table S6 contain 

all relationships in up-regulated and down-regulated, 

respectively. 
 

Table 4. Top 10 biological processes, molecular functions, cellular components, and KEGG pathways of 10% hub and bottleneck genes identified 
using the DAVID database (sorted based on p-value <0.05) 

 

ID Terms p-value Genes 

Biological process 

GO:1903047 mitotic cell cycle process 5.11E-26 NCAPG, MCM10, TTK, KIF11, AURKB, CDC20, CCNB2, … 

GO:0000278 mitotic cell cycle 4.81E-25 NCAPG, MCM10, TTK, KIF11, AURKB, CDC20, CCNB2, … 

GO:0022402 Cell cycle process 4.38E-24 GSK3B, NCAPG, MCM10, TTK, BRCA1, KIF11, … 

GO:0044772 mitotic cell cycle phase transition 9.66E-24 UBE2C, TUBB, PLK1, TTK, MCM10, CDC6, NDC80, … 

GO:0044770 Cell cycle phase transition 3.77E-23 UBE2C, TUBB, PLK1, TTK, MCM10, CDC6, NDC80, … 

GO:0007049 Cell cycle 5.82E-23 GSK3B, NCAPG, MCM10, TTK, BRCA1, KIF11, … 

GO:0007067 mitotic nuclear division 4.28E-22 UBE2C, PLK1, NCAPG, TTK, KIF11, CDC6, RHOA, … 

GO:0010564 Regulation of cell cycle process 8.14E-21 UBE2C, PLK1, TTK, BRCA1, KIF11, CDC6, RHOA, … 

GO:0000075 Cell cycle checkpoint 2.37E-20 PLK1, TTK, BRCA1, CDC6, NDC80, AURKB, CCNA2, … 

GO:0000280 Nuclear division 1.70E-19 UBE2C, PLK1, NCAPG, TTK, KIF11, CDC6, RHOA, … 

Molecular function 

GO:0005515 Protein binding 2.71E-08 GSK3B, STX17, STX16, NCAPG, MCM10, TTK, BRCA1, … 

GO:0035639 Purine ribonucleoside triphosphate binding 2.87E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 

GO:0032550 Purine ribonucleoside binding 3.10E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 

GO:0032549 Ribonucleoside binding 3.18E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 

GO:0001883 Purine nucleoside binding 3.18E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 

GO:0001882 Nucleoside binding 3.37E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 

GO:0032555 Purine ribonucleotide binding 4.12E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 

GO:0017076 Purine nucleotide binding 4.59E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 

GO:0032553 Ribonucleotide binding 4.70E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 

GO:0004674 Protein serine/threonine kinase activity 5.55E-08 GSK3B, CCNB2, CCNB1, PLK1, CHEK1, PBK, CDK1, … 

Cellular component 

GO:0015630 microtubule cytoskeleton 1.04E-18 GSK3B, TUBB, PLK1, NCAPG, TTK, BRCA1, KIF11, … 

GO:0005856 Cytoskeleton 5.37E-15 GSK3B, NCAPG, TTK, BRCA1, KIF11, AURKB, CDC20, … 

GO:0044427 Chromosomal part 1.42E-14 PLK1, NCAPG, TTK, MCM10, BRCA1, NDC80, AURKB, … 

GO:0044430 Cytoskeletal part 2.93E-14 GSK3B, TUBB, PLK1, NCAPG, TTK, BRCA1, KIF11, … 

GO:0043228 Non-membrane-bounded organelle 3.89E-14 GSK3B, NCAPG, MCM10, TTK, BRCA1, KIF11, … 

GO:0043232 Intracellular non-membrane-bounded organelle 3.89E-14 GSK3B, NCAPG, MCM10, TTK, BRCA1, KIF11, … 

GO:0005694 Chromosome 1.20E-13 PLK1, NCAPG, TTK, MCM10, BRCA1, NDC80, AURKB, … 

GO:0005819 Spindle 9.41E-13 PLK1, TTK, KIF11, CDC6, AURKB, CDC20, TPX2, … 

GO:0044446 Intracellular organelle part 1.61E-12 GSK3B, STX17, STX16, NCAPG, MCM10, TTK, BRCA1, … 

GO:0005815 microtubule-organizing center 1.74E-12 GSK3B, PLK1, NCAPG, BRCA1, AURKB, CDC20, … 

KEGG    

hsa04110 Cell cycle 8.81E-20 GSK3B, PLK1, TTK, CDC6, CCNA2, CDC20, CCNB2, … 

hsa04115 p53 signaling pathway 1.41E-04 CCNB2, CCNB1, CHEK1, CDK1, TP53 

hsa05203 Viral carcinogenesis 1.42E-04 CCNA2, CDC20, CHEK1, CDK1, MAPK1, TP53, RHOA 

hsa04130 SNARE interactions in vesicular transport 0.008270639 STX17, STX16, SNAP29 

hsa04722 Neurotrophin signaling pathway 0.012342719 GSK3B, MAPK1, TP53, RHOA 

hsa04068 FoxO signaling  pathway 0.016591619 CCNB2, CCNB1, PLK1, MAPK1 

hsa05130 Pathogenic Escherichia coli infection 0.018014118 CDH1, TUBB, RHOA 

hsa05166 HTLV-I infection 0.018496934 CDC20, GSK3B, CHEK1, TP53, MAD2L1 

hsa04520 Adherens junction 0.033403027 CDH1, MAPK1, RHOA 

hsa04110 Cell cycle 8.81E-20 GSK3B, PLK1, TTK, CDC6, CCNA2, CDC20, CCNB2, … 
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Motif detection and generating motif-specific sub-networks  
The miRNA-gene, TF-Gene, miRNA-TF, TF-miRNA 

relationships were combined, and the regulatory net-

works were constructed. The up- and down-regulated 

gene networks contained 2250 and 2251 nodes, respec-

tively. The FANMOD software was used to detect the 

motifs. The types of identified motifs are represented 

in figure 4 for up- and down-regulated gene networks.  

We selected motifs with Z-score>2, p-value<0.05, 

and at least two-color edges (two types of interactions). 

Motifs with identification numbers 14, 78, and 164 

were finally selected in the up-regulated network. The 

sub-networks related to these motifs were merged to 

create a network, including 64 miRNAs, 53 genes, and 

321 TFs. The regulatory sub-networks were visualized 

by Cytoscape 3.5.1. (Figure 5A). Motifs No.78 and 164 

were selected and merged in the down-regulated net-

work to create a sub-network including 77 miRNAs, 

eight genes, and 274 TFs (Figure 5B). 
The topological analysis of up and down-regulated 

GRNs identified the BTG Anti-Proliferation Factor 2 

Table 5. Summary of four types of regulatory relationships among miRNA-gene, TF-Gene, miR-TF, and TF-
miR interactions 

 

Relationship Number of pairs Number of genes Number of TFs Number of miRNAs 

Up-regulated     

miRNA-gene 2103 52 - 1082 

miR-TF 5979 - 152 1445 

TF-Gene 1088 56 227 - 

TF-miR 2011 - 356 323 

Down-regulated     

miRNA-gene 2457 88 - 1027 

miR-TF 5862 - 133 1451 

TF-Gene 1558 87 209 - 

TF-miR 2008 - 354 320 

 

 

Figure 4. Regulatory motifs consist of miRNAs, TFs, and target genes detected in up and down-regulated gene networks with their Z-score and their 
p-value. Three types of relationships involved in these motifs included miRNA-gene (miRNA represses gene expression); miRNA-TF (miRNA re-

presses TF gene expression); and TF-miRNA (TF regulates miRNA expression). 

Figure 5. Regulatory sub-networks. A) The sub-network was gener-
ated by merging motifs No.14, 78, and 164 in the up-regulated gene 

network. B) Merging motifs No.78 and 164 in the down-regulated 

network. Pink diamond nodes are miRNAs, green circular show 

genes, and yellow rectangles represent the transcription factors. 
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(BTG2), Specificity Protein 1 (SP1), and TP53 as hub-

bottleneck, which were also present in up-regulated 

sub-network. However, none of the genes in the down-

regulated sub-network was among the GRN 10% of 

hub-bottlenecks. 
 

Gene ontology and biochemical pathway enrichment analy-

sis 
For Gene Ontology analysis, genes obtained from 

motif detection were submitted in the DAVID data-

base. The top 10 Biological process terms included 

regulation of cell death and the metabolic process, nu-

cleic acid-binding, transcription binding are top 10 in 

molecular function terms. The cellular components 

showed the nucleus and organelle as the top related to 

the gene-set. The significant pathways were identified 

from analysis of genes in motif-related sub-networks 

using the DAVID database. The significant pathways 

included the p53 signaling pathway, transcriptional 

misregulation in cancer, cell cycle, PI3K-Akt signaling 

pathway, viral carcinogenesis, viral infection, Measles, 

and FoxO signaling pathway (Table 6). Supplementary 

table S7 contains all gene ontology and KEGG path-

ways data related to the gene set. 

 

Discussion 
 

Breast cancer is the most common malignancy in 

women. Its molecular heterogeneity influences the se-

lection of methods in the effective treatment of this 

cancer 2. Treatment of routine surgery, radiation thera-

py, chemotherapy, stabilizing agents, enzyme inhibi-

tors, and immunotherapy are used to treat breast can-

cer. DXR is an effective chemotherapeutic drug of the 

anthracycline family used to treat breast cancer 50. A 

comprehensive understanding of the molecular mecha-

nisms of DXR in the treatment of breast cancer is still 

lacking 51. The systems biology approach and bioin-

formatical network analysis for breast cancer in re-

sponse to DXR help candidate essential genes and 

pathways mediating in response to this drug for further 

experimental examinations. The identified and validat-

ed targets and pathways may even be used to repurpose 

new drugs. 

Network-based approaches have recently appeared 

to be a powerful tool to investigate pathobiological 

processes and the molecular complexity of disease ae-

tiology by identifying disease-specific network clusters 

such as MCODE clusters in PPI networks. The nodes 

participating in these particular regions usually have 

critical roles and biological functions 52. Nodes partici-

pating in regulatory motifs also are of biological im-

portance in GRNs 53. We applied the MCODE clusters 

and GRN motifs to predict the molecular mechanisms 

underlying the treating effect of DXR on breast cancer 

and its side effects. This study selected genomics and 

proteomics data to integrate and explore critical genes 

and molecular pathways. The present study is the first 

in silico analysis that uses bioinformatics analysis to 

predict the essential genes and pathways of breast can-

cer treated with DXR and its side effects.  

Our systematic analysis of the PPI MCODE clusters 

and GRN motif-related sub-networks of the MCF7 cell 

line in response to DXR demonstrated that TP53, 

MCM10, and MCM3 are the top hub-bottlenecks and 

MCODE cluster seeds in response to DXR (Supple-

mentary table S8).  The functional enrichment analysis 

indicated that hub-bottleneck and cluster nodes were 

involved in the cell cycle, P53 signaling pathway, 

FoxO signaling pathway, and viral carcinogenesis.   

TP53 is a hub-bottleneck protein in our PPIN and 

GRN. TP53 is a gene with a high degree and between-

ness centrality over-expressed in the MCF-7 cell line in 

response to DXR. This protein can recognize DNA 

damage, stop the cell cycle at the G1/S regulation 

point, and activate DNA repair proteins. Therefore,  
 

TP53 can initiate apoptosis if DNA damage is irrepara-

ble 54. TP53 was up-regulated in MCF-7 cells treated 

with DXR. Therefore, it can be concluded that DXR 

activates the repair system and instigates apoptosis in 

cancer cells possible through P53 mediation.  

The Minichromosome Maintenance proteins (MCM) 

are critical regulators in DNA replication 55. These 

proteins are implicated in cancer initiation and progres-

sion, and their expression is up-regulated in a wide 

range of epithelial malignancies 56. MCM10, an MCM 

family member, is an essential factor for DNA replica-

tion by binding with Cell Division Cycle 45 (CDC45) 

and is essential in breast cancer progression 57. Alcivar 

AL et al reported that cells depleted of MCM10 show- 
 

ed instability of replication fork 58. Wei‐Dong Yang et 

al in 2019 showed MCM10 was significantly over-

expressed in breast carcinoma and involved in prolifer-

ation, migration, and invasion. Therefore, it can induce 

metastasis via the Wnt/β-catenin pathway in breast 

cancer 59. Our results identified MCM10 as a critical 

node in the network. Given the importance of this pro-

tein and the lack of experimental literature about its 

mediation in response to DXR, we suggest that its ex-

perimental investigation seems necessary.  

MCM3, another MCM member, is over-expressed 

in various human cancers 60. MCM3 is one of the cell 

cycle markers that regulates the growth, migration, and  
 

invasion of cells 61. Our study showed that MCM3 was 

also a down-regulated protein of importance in the 

networks. Therefore, we hypothesize that DXR can 

probably inhibit DNA replication, invasion, and metas-

tasis by down-regulating the MCM10 and MCM3 

genes. 

The functional enrichment analysis showed regula-

tion of the cell cycle, p53 signaling, viral carcinogene-

sis, Human T-Lymphotropic Virus type 1 (HTLV-1) 

infection, and FoxO signaling  pathway were the top  
 

terms related to hubs and bottlenecks in PPIN, 

MCODE clusters, and GRNs. Besides, Soluble N-

ethylmaleimide-sensitive factor Attachment protein  

 

https://www.researchgate.net/scientific-contributions/Wei-Dong-Yang-2156106369?_sg%5B0%5D=JdQFSGawT_ik9XEgqewQkBQ-z6lmcoSFQtGjPi7xiZidtSdwQO91R5-cQWv-rQ8DpgS5uoc.kT1M-owqDTXQ_2cidS-y_K0PFZWoqLqn2PzGbNdPO_RKR1nn58G8Hic1aYAtWpgUX6RyeiLrNkBmc0XwMFDzYg&_sg%5B1%5D=xxr77BluFj0wg-vfNmJ0QkqW4HoSjkG97IP4JntLQaWkLJcizQLOumY9BEM0xSLq2F2UmO8.Qlwbc918HJCh5M6KEHTTJGPHbAZXwzS_SC9Ty6w_NhifeBBC6GoqnYJHyq8RgFg5iLDGSbHE1Uxis1OEUdbD1g
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Receptor (SNARE) interactions in vesicular transport 

and neurotrophin signaling pathway were identified in 

our PPIN KEGG pathway results that could be related 

to side effects of DXR. 

Deregulation of the cell cycle is one of the mecha-

nisms involved in the malignant phenotype of cancer. 

Regulation of the cell cycle can be used as a therapeu-

tic targeting strategy against cancer 62. The chemother- 

 

Table 6. The table represents the top 10 biological processes, molecular function, cellular components, and KEGG pathways identified using the 
DAVID tool (sorted based on p-value<0.05) 

 

GO ID Terms p-value Genes 

Biological process   

GO:0010941 Regulation of cell death 4.37E-10 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 

GO:0010604 
Positive regulation of macromolecule metabolic  

process 
4.69E-10 FOXA1, KDM5B, CDKN1A, BTG2, CEBPB, … 

GO:0042981 Regulation of the apoptotic process 6.86E-10 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 

GO:0043067 Regulation of programmed cell death 8.18E-10 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 

GO:0008219 Cell death 2.29E-09 CDKN1A, BTG2, CEBPB, GLS2, GATA3, … 

GO:0009893 Positive regulation of the metabolic process 2.54E-09 FOXA1, KDM5B, CDKN1A, BTG2, CEBPB, … 

GO:0031325 Positive regulation of cellular metabolic process 1.09E-08 FOXA1, CDKN1A, BTG2, CEBPB, SRSF1, … 

GO:0012501 Programmed cell death 2.31E-08 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 

GO:0010628 Positive regulation of gene expression 2.33E-08 FOXA1, KDM5B, CEBPB, NFYC, SRSF1, … 

GO:0006915 Apoptotic process 4.17E-08 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 

Molecular function   

GO:0000982 
Transcription factor activity, RNA polymerase II core 

promoter proximal region sequence-specific binding 
1.27E-09 FOXA1, BTG2, CEBPB, NFYC, GATA3, … 

GO:0044212 Transcription regulatory region DNA binding 1.61E-09 FOXA1, PRMT5, CEBPB, GADD45A, NFYC, … 

GO:0000975 Regulatory region DNA binding 1.70E-09 FOXA1, PRMT5, CEBPB, GADD45A, NFYC, … 

GO:0001067 Regulatory region nucleic acid binding 1.73E-09 FOXA1, PRMT5, CEBPB, GADD45A, NFYC, … 

GO:0001228 

Transcriptional activator activity, RNA polymerase  

II transcription regulatory region sequence-specific 

binding 

9.84E-09 FOXA1, FOSL1, CEBPB, CREB1, MAF, MAFB, … 

GO:0000981 
RNA polymerase II transcription factor activity,  
sequence-specific DNA binding 

2.86E-08 FOXA1, BTG2, CEBPB, NFYC, GATA3, … 

GO:0000987 
Core promoter proximal region sequence-specific 

DNA binding 
4.26E-08 FOSL1, MUC1, CEBPB, CREB1, MAFB, SP1, … 

GO:0003690 Double-stranded DNA binding 4.45E-08 PRMT5, CEBPB, NFYC, XPC, GATA3, RUNX2, … 

GO:0001159 Core promoter proximal region DNA binding 4.50E-08 FOSL1, MUC1, CEBPB, CREB1, MAFB, SP1, … 

GO:0000976 
Transcription regulatory region sequence-specific 

DNA binding 
4.98E-08 PRMT5, CEBPB, NFYC, GATA3, RUNX2, … 

Cellular component   

GO:0070013 Intracellular organelle lumen 1.61E-06 FOXA1, KDM5B, CDKN1A, CEBPB, GLS2, … 

GO:0043233 Organelle lumen 2.34E-06 FOXA1, KDM5B, CDKN1A, CEBPB, GLS2, … 

GO:0031974 Membrane-enclosed lumen 3.13E-06 FOXA1, KDM5B, CDKN1A, CEBPB, GLS2, … 

GO:0005667 Transcription factor complex 7.01E-06 CEBPB, CREB1, MAFB, CDK4, NFYC, GATA3, … 

GO:0031981 Nuclear lumen 1.77E-05 FOXA1, KDM5B, CDKN1A, CEBPB, SRSF1, … 

GO:0000785 Chromatin 1.93E-05 MUC1, CEBPB, CREB1, MAF, SP1, CDK4, … 

GO:0005654 Nucleoplasm 2.81E-05 CTSA, KDM5B, PRMT5, CDKN1A, CEBPB, … 

GO:0044428 Nuclear part 3.71E-05 FOXA1, KDM5B, CDKN1A, CEBPB, SRSF1, … 

GO:0005634 Nucleus 5.48E-05 FOXA1, KDM5B, CDKN1A, CEBPB, SRSF1, … 

GO:0044422 Organelle part 2.45E-04 FOXA1, KDM5B, CDKN1A, CEBPB, SYNM, … 

KEGG    

hsa04115 p53 signaling pathway 2.01E-06 
CDKN1A, ZMAT3, CDK4, GADD45A, MDM2, 

FAS, TP53 

hsa05202 Transcriptional misregulation in cancer 4.16E-05 
CDKN1A, CEBPB, MAF, SP1, MDM2, TP53, 

RUNX2, PBX1 

hsa04110 Cell cycle 6.97E-04 CDKN1A, CDK4, GADD45A, PLK1, MDM2, TP53 

hsa04151 PI3K-Akt signaling pathway 0.013789 
CDKN1A, CREB1, CDK4, MDM2, BRCA1, TP53, 

EPHA2 

hsa05166 HTLV-I infection 0.015101 FOSL1, CDKN1A, CREB1, CDK4, TP53, ATF3 

hsa05203 Viral carcinogenesis 0.030309 CDKN1A, CREB1, CDK4, MDM2, TP53 

hsa05162 Measles 0.041521 CDK4, FAS, TNFRSF10B, TP53 

hsa04068 FoxO signaling  pathway 0.042304 CDKN1A, GADD45A, PLK1, MDM2 
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apeutic agent DXR can cause cell arrest in the G1-

phase of the cell cycle 63. In addition, Kim HS et al in 

2009 reported that this drug could induce intracellular 

apoptotic signaling through up-regulation of Fas ex-

pression 64.  

Viral carcinogenesis and HTLV-1 infection were 

other pathways related to hubs and bottlenecks enrich-

ments. The virus has known oncogenic potential in 

specific cancers, including the cervix, liver, head and 

neck, some lymphomas, and breast cancer 65. HTLV-1 

is one of the viruses that encode oncogenic protein 

Tax1 Binding Protein 1 (TAX1) and help breast cancer 

progression 66. TAX1 protein can inactivate the func-

tion of cellular TP53 and postpone the G1 cell cycle 

arrest required for repairing DNA in response to DNA 

damage 67. DXR can induce apoptotic cell death in 

HTLV-1 infected cells 68.  

Our model identified that the P53 signaling pathway 

was a significantly enriched KEGG pathway related to 

hub-bottlenecks and MCODE clusters. McSweeney et 

al in 2019 reported TP53 as a critical regulator of tran-

scriptomic changes induced by DXR 69. Ru-Wei Lin et 

al in 2018 showed DXR-induced apoptosis in response 

to DNA damage by overexpression of TP53 70. In addi-

tion, p53 interferes in cell metabolism, ferroptosis, 

autophagy, and generation of ROS 71. These validate 

the predictions performed by our model and justify 

performing experimental examinations on its other 

findings. 

The FoxO signaling pathway was another identified 

signaling predicted by the model. FoxO transcription 

factors are tumor suppressors that mediate redox ho-

meostasis, proliferation, survival, and Phosphatidylino-

sitol-4,5-Bisphosphate 3-Kinase (PI3K) 72. Rosaline 

CY et al. reported that the cancer treatment with DXR 

increased FOXO3a activity 73. During apoptosis, 

FOXOs are involved in expressing death receptor lig-

ands such as Fas ligand, TNF, Bim, bNIP3, and Bcl-XL 
74. The enhanced FOXO3a activity increased the ex-

pression of ABCB1, a plasma membrane P-glycopro-

tein, which functions as an efflux for various anti-can-

cer agents 73. FOXO proteins play an essential role in 

glucose homeostasis by promoting gluconeogenic en-

zyme expression 75. The dysfunction of FoxO1 path-

ways involves several metabolic diseases, including 

atherosclerosis, diabetes, non-alcoholic fatty liver dis-

ease, and obesity 76. Notably, FOXO proteins are in-

volved in physiological processes. Activation and inhi-

bition of these proteins could have intolerable side ef-

fects. 

Other signaling pathways significantly enriched in 

our study were SNARE interactions in vesicular trans-

port and neurotrophin signaling pathway. SNAREs are 

a group of transmembrane proteins which create a 

bridge for interaction vesicle to its fusion partner. This 

vesicle trafficking is regulated by a separate process 

and stimulates the SNARE complex formation 77. The 

dysfunction of membrane trafficking is associated with 

cardiovascular events 78.  DXR disrupts the trafficking 

membrane by reducing Syntaxin 17 (STX17), Syntaxin 

16 (STX16), and Synaptosome Associated Protein 29 

(SNAP29) protein expression, thereby probably having 

side effects on the heart in this way. Besides, neurotro-

phins and their receptors are regulatory factors in heart 

and vascular development. These molecules regulate 

angiogenesis and vasculogenesis, controlling the sur-

vival of endothelial cells, vascular smooth muscle cells 

and cardiomyocytes 79. Therefore, DXR may lead to 

cardiotoxicity through dysfunction of the neurotrophin 

signaling pathway with a change in expression of Gly-

cogen Synthase Kinase 3 Beta (GSK3B), Mitogen-

Activated Protein Kinase 1 (MAPK1), TP53, and Ras 

Homolog Family Member A (RHOA) proteins. In ad-

dition, the SNARE complex is vital in the formation of 

vesicle fusion, vesicle recycling and neurotransmitter 

release. The defects in the formation of the SNARE 

complex, SNARE-dependent exocytosis, and SNARE-

mediated vesicle fusion are associated with neurologi-

cal diseases 80. 

Altogether we suggest that DXR regulates repair, 

apoptosis, invasion and metastasis of breast cancer 

cells. Its side effects are probably mediated by SNARE 

interactions in vesicular transport and neurotrophin 

signaling pathway and FoxO signaling pathway 

through up- and down-regulated genes primarily identi-

fied in our model. Further studies in vitro and in vivo 

are required to validate some of our novel findings. 

 

Conclusion 
 

This study applied a network-based approach (PPIN 

and GRN) to reveal the network hubs and bottlenecks 

and 3-nodes motifs consisting of TFs, miRNAs, and 

target genes underlying the DXR effect on breast can-

cer. We identified the molecular mechanisms and path-

ways mediating in response to DXR treatment. The 

hubs and bottlenecks of PPIN and GRN and PPIN 

MCODE clusters of differentially expressed genes in 

the MCF-7 cell line treated with DXR revealed that the 

essential biological processes and pathways are related 

to cell cycle, p53, viral carcinogenesis, and FoxO sig-

naling pathway. Besides, SNARE interactions in vesic-

ular transport and neurotrophin signaling pathway and 

FoxO signaling pathway were identified as pathways 

possibly mediating in its side effects. MCM10 and 

MCM3 were identified as essential DEGs mediating in 

response to DXR and are recommended for further 

investigations since their role is not studied sufficiently 

so far. We hope that our analysis results can understand 

the mechanisms involved in response to DXR and its 

side effects and help design further experimental inves-

tigations. 
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Supplementary 

Supplementary Table S1. Up/Down-regulated proteins are represented below 
 

Up regulated  Down regulated  Up regulated Down regulated  Up regulated Down regulated 

BTG2 ESPL1  CAT  DLGAP5   ZFR  

GDF15 E2F8  TP53I3  RAD51AP1   PBRM1  
WISP2 ORC3  CCS  MKI67   NKRF  

HIC2 TPX2  PML  DTL   PRDM15  

TIGAR GPSM2  PRKD1  PAICS   ZFP2  
EPHA2 CCNB1  PXN  MPHOSPH9   TTC5 

ATF3 BRCA1  HBA2  MCM6   C17orf49  

FAS BIRC5  LIG1  CENPI   ZBTB9  
TAP1 PLK1  CDK1  CCNF   HIST2H2AB  

XPC ST8SIA4  PRKAA1  SLC25A12   YY2  

NADSYN1 TUBB  ASNS  KIF20A   HIST2H3D  
KRT15 CHEK1  CDH1  TTK   RFX8  

MOSPD1 MUC1  CDK4  CDKN3   CREB1  

STOM KIF11  CDKN1A  NCAPG   PNKP  
YPEL5 SKP2  MPST  CENPF   PURB  

AVPI1 ORC1  SCFD1  AKAP8    NABP2  

DPYSL4 CDC6  HMGCL  PES1    TAF2  
GM2A ZWILCH  SMARCA5  H2AF   TAF7  

DUSP1 DBF4  FOXD4L1  MKI67IP    MTA2  

WSB1 KIF14  MSH2  CSNK1A1    HOXC11  
PHYH MAD2L1  SRSF1  PPP1CC    HOXD10  

ZMAT3 POLA1  GNA13  BUB3    ALX1  

LIMK2 AURKB  PITPNB  NDE1    MYBBP1A  
TP53I3 MCM3  TANC2 ERCC6L    VSX1 

AK1 TIPIN  EPN1  SPC24    POLE4  

PSG9 C17orf75  MBD3  NUP43    STX16  
EPPK1 KIF4A  RIC8A  LIG3    SNAP29  

TMEM158 BARD1  GRSF1  NSMCE2    STX17  

GADD45A MCM10  AMBRA1  PARP1    TLK1  
MDM2 FBXO5  PPP1R13L  BCL3    HIRIP3  

TRAF4 MELK  MLL  CCNT1    ASF1B  

CSAD CDC20  POU4F3  DNA2    ACTL6A  
SLC6A8 GART  PRKRA  ENO1    SUPT4H1  

TNFRSF10B NDC80  RUNX2  GATA3    LEO1  

ARFGAP3 CCNA2  DLG1  GTF2A1    MRGBP  
MAFB GTSE1  ALB  H1F0    UTP3  

CABYR BUB1  GSTK1 HIST1H1E    SRPK1  
CDKN1A PBK  PRDX4 HIST1H1B    BRD8  

MORC4 DEPDC1  SNAPIN  HMGN1    PRMT5  

MAF NCAPH  DTNBP1  AGFG1    PYGO2  
FDXR MDC1  SLC6A17  MCM3    GPI  

PIDD1 PFAS  TRIM37  NFYB    C3  

GPR87 HNRNPD  CHP1  PBX1    MTPN  

ACTA2 CENPE  PYCARD  POLR2C    OGDH  

ANXA4 ASPM  NR3C2 MAPK1    HPRT1  

SYNM UBE2S  NFYC  RFC2    MYCBP2  
CYFIP2 LMNB1  ZNF24  RPL6    MAP2  

FOSL1 PRIM1  MTA1  SMARCA1    ANXA1  

PDE4A CDCA3  ZGPAT  SMARCC1    RYK  
GLS2 ATAD2  ARX SP100    UACA  

SAT1 BRIP1  FOSL2  SURF6    CD276  

GABPA  STIL  NUP93  BRPF1    CTNNA2  
TP53  UBE2C  NUP153  DEK    MYO1D  

CEBPB  CCNB2  NUP107  KDM5D    DDN  

FOXA1  MCM7  GSK3A  ARID1A    LIMS1  
SP1  PRC1  GSK3B  HIST2H2AC   RHOA  

ANK3  CDT1  PREP  NCOR2    LTBP2  

GOLGA4  CDC45  CTSA BCLAF1    PPM1A  
ARFRP1  GEMIN2  SCPEP1  TOX4    PPP1CB  

MACF1  SPC25  ARHGEF2 SRA1    UBA52  

NQO1  WDHD1   HUWE1    SNX6  
NUDT1  MCM2   PQBP1    ANKRD17  

NDUFS8  DUT   SRRM1   

RRM2B  KIF18A   KDM5B   
NAPRT1  KIF15   AKAP8L  

SRXN1  MSH2   NUSAP1   
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Supplementary Table S2. Hubs and bottlenecks (top 10%) related to PPI 
network obtained by Cytoscape software. 
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Supplementary Table S3. Each column represents proteins available in one 
MCODE cluster 

 

Subnetwork 1 Subnetwork 2 Subnetwork 3 

CDC45 ASF1B GTF2A1 
TTK PRIM1 NAPRT 

MELK PPP1CC GM2A 

BUB1 MCM3 C3 
CCNB2 ORC1 PBRM1 

DLGAP5 MCM7 MAPK1 

KIF15 ZWILCH TUBB 
KIF20A NDE1 PARP1 

CDKN3 ERCC6L HIST2H2AC 

CDCA3 NUP43 ARID1A 
KIF14 CDT1 SMARCC1 

BIRC5 SPC24 BARD1 

MKI67 CENPI ACTL6A 
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Supplementary Figure S1. Venn diagram for DEGs of GEO datasets (GSE124597, GSE39870, and GSE13477) related to MCF-7 cell line treated with 

doxorubicin. A) Venn diagram related to up-regulated genes B) Venn diagram related to down-regulated genes. 


