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Abstract 
Menstrual-derived Stem Cells (MenSC) are a potential novel source of mesenchymal 
stem cells. There is an increased interest in investigating the therapeutic potential of 
MenSC due to the various advantages they exhibit, when compared to other types of 
stem cells. MenSC are obtained non-invasively from menstrual blood. Thus, collection 
of MenSC is simple, reproducible and can be carried out periodically, with minimal 
complications. MenSC are present in abundance, are highly proliferative, exhibit a low 
immunogenicity and lack ethical issues. MenSC have shown the ability to differentiate 
into several lineages. The therapeutic potential of MenSC in non-gynaecological ap-
plications has been investigated in wound healing, neurological, musculo-skeletal,  
cardiovascular, respiratory, and liver disorders, as well as in diabetes and cancer. Hu-
man clinical trials are limited. To date, therapeutic efficacy and safety have been re-
ported in patients with Avian influenza A subtype H7N9, COVID-19, congestive heart 
failure, multiple sclerosis and Duchene muscular dystrophy. However, further clinical 
trials in humans should be conducted, to study the long-term therapeutic effects of 
these stem cells in various diseases and to further explore their mechanism of action. 
This systematic review focuses on the application of MenSC in non-gynaecological dis-
eases.  
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Introduction 
 

A novel source of mesenchymal stem cells was 

identified from menstrual blood in 2007 and they were 

called Menstrual-derived Stem Cells (MenSC) 1,2. In-

creased interest was shown towards MenSC due to 

their abundance, continuous source, non-invasive col-

lection via menstrual cups, low immunogenicity, high 

proliferation, differentiation ability and lack of ethical 

issues 3-5. The mechanisms of action of MenSC are by 

differentiation into target cells, immunomodulation, 

paracrine cytokine secretion, migration and engrafting 

into injured sites 6. MenSC can differentiate into sever-

al lineages including endothelial, osteogenic, chondro-

genic, adipocytic, pancreatic, hepatic, respiratory epi-

thelial, cardiomyocytic, and neurocytic lineages 1,7-10. 

MenSC have shown potential therapeutic application in 

various non-gynaecological disorders including wound 

healing 11-14, neurological 15-17, musculoskeletal  18,19, 

cardiovascular 5,20,21, respiratory 5,20,22 and liver 23,24 

diseases, as well as in diabetes 25,26 and cancer 27-31. 

Several studies also considered the gynaecological ap-

plications of MenSC, such as in ovarian-related diseas- 
 

 

 

 

 
es 32,33, endometrial injury 34,35 and Asherman syn-

drome 36,37. 

Meng et al 38 were the first authors to report the 

presence of stem cells in menstrual blood which were 

referred to as endometrial regenerative cells. In the 

literature, various nomenclatures were used to refer to 

MenSC which are listed in table 1. 

To obtain MenSC, menstrual blood from healthy 

women is collected using menstrual cups. The ex-

clusion criteria used in various studies were: vaginal 

infection history, non-steroidal anti-inflammatory 

drugs, corticosteroids and oral contraceptives use with-

in the last 3 months, infections such as human immu-

nodeficiency viruses, hepatitis C virus and hepatitis B 

virus, autoimmune diseases, diabetes, endometriosis 

and malignancies 63-66. Menstrual blood for the isola-

tion of MenSC should be collected on the day with the 

heaviest blood flow 65-66 usually the second day 64,67-69. 

Around 5 ml volume of blood will provide sufficient 

stem cells. The age range of the female participants in 

the studies ranged from 18 years to 45 years old with  
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the most common age group being between 22 and 30 

years 56,64-67.  

The collected menstrual blood is transferred in 

Phosphate Buffered Saline (PBS), amphotericin B, 

streptomycin, penicillin and Ethylenediaminetetra-

acetic acid (EDTA) 38,44,56,70. The temperature of the 

collected sample is maintained at 4oC and is trans-

ported within 24 hr upon collection to the laboratory 

for processing 70. The Ficoll-Paque Density Gradient 

Centrifugation (DGC) method is used to separate men-

strual blood mononuclear cells and then the separated 

cells are washed with PBS. The isolated cells from the 

middle white layer of endometrial cells are cultured in 

T25 flask containing modified Eagle’s medium, 1% 

penicillin/streptomycin with high glucose, 1% ampho-

tericin B, 15% Fetal Bovine Serum (FBS) and 1% glu-

tamine at 37oC to obtain adherent cells 56,71. The next 

day, the media are changed so that non-adherent cells 

are washed out, 0.05% trypsin-EDTA is used to detach 

adherent cells, the cells are then counted and sub-

cultured. The culture media are changed twice a week 

and are incubated at 37C with 5% CO2 and saturated 

humidity 71. At 7 to 10 days of incubation when the cell 

confluency reaches 70%, the culture medium is re-

moved and around 5 ml of pre-warmed trypsin-EDTA 

is used to detach the cells for 2 to 3 min in CO2 incuba-

tor. Trypsin is then neutralised by adding 10 ml media 

containing 20% FBS and the cells are gently collected. 

The cells are passaged and, after 2 to 3 passages, there 

is sufficient cells for differentiation experiments 65,66.  

The DGC is the conventional method used for isola-

tion of MenSC, however, in the buffy coat this method 

leaves flocculent membranes and karyocytes of the 

deciduous endometrium 38,58. Most of the MenSC 

clones are produced by the deciduous endometrium. 

Moreover, it was noted that menstrual blood clots 

would interwind with deciduous endometrium after 

DGC. In the study by Sun et al 72, a method for high 

yield isolation of MenSCs was tested which differs 

from the method described above. It was shown that 

MenSC remained in sedimentation after DGC. Red 

Blood Cell Lysis Buffer (RLBD) was used directly and 

compared to DGC. MenSC isolation was increased by 

RLBD. In this study, the DGC method was used but 

then from the buffy coat, the deciduous endometrium 

and karyocytes were transferred to a new tube and 

washed with PBS 72. These were then suspended in 

high glucose Dulbecco’s Modified Eagle’s Medium 

(DMEM) and transferred into new tubes with superna-

tant removal. Then, the red blood cell lysing buffer was 

added to suspend the sedimentation at room tempera-

ture for 3 to 5 min. RBC lysis was performed twice till 

most of the erythrocytes were lysed osmotically. Wash-

ing with PBS was done and then the suspension of the 

sedimentation in growth medium was incubated at 

37C with 5% humidified CO2. This method collected 

a higher number of MenSC than the conventional DGC 
72.  

High concentrations of Platelet Rich Plasma (PRP) 

affect MenSC culture duration. It was reported that the 

optimal PRP concentration for MenSC proliferation 

was 10% 73,74. Processing of menstrual blood up to 72 

hr after collection does not cause property changes in 

the MenSC plastic adherence 44. For therapeutic appli-

cation, MenSC must be expanded in culture so as to 

obtain enough cells for use. With increase of passage 

number, MenSC proliferation rate decreases gradually 

due to aging of MenSC 75. There is a change in mor-

phology in highly passaged cells as they increase in 

size, lose the fibroblastic morphology and appear se-

nescent. High passing of stem cells (P20) causes gene 

alteration which are involved in stress response, tran 

scriptional regulation, development, cell proliferation 

and apoptosis. Moreover, at high passages there is kar-

yotype alteration. Zemel’ko et al 76 reported that Men-

SC at 45 population doubling underwent aging. Meng 

et al 38 showed that MenSC maintained normal karyo-

type with no tumour development after 68 PD. During 

MenSC passages, pluripotency protein expression of  
 

octamer-binding transcription factor 4 (OCT-4) posi-

tive cells during the first passage was 97.5%, while 

when the twelfth passage was reached the positivity of 

OCT-4 positive cells was reduced to 19.4%. The study  
 

by Kahanmohammadi et al 51, reported that at the sec-

ond and twelfth passage MenSC diploid phenotype was 

kept without any aberration in the chromosomes.  

MenSC have the ability to differentiate into various 

lineages in the right conditions. Various studies have 

shown MenSCs ability to differentiate into osteogenic,  
 

adipocytes, chondrogenic, hepatocyte-like cells, germ-

like cells, neural-like cells, cardiomyocytes and kera-

tinocytes-like cells 38,56,77. In most of the studies, prior 

to differentiation of MenSC into different lineage, the 

ability of MenSC to differentiate into adipogenic, 

chondrogenic and osteogenic was assessed. 

MenSCs under light microscopy displays a spindle 

shaped and fibroblast-like morphology 38,78-80. At low 

density platting, MenSC grow as large flat cells in a 

monolayer and fibroblast colony forming units are cre-

ated. A spindled shaped fibroblastic morphology is 

Table 1. Nomenclatures used for MenSC (39) 
 

Other names used for MenSC References 

Endometrial regenerative cells (38,40,87,96,127,128) 

Endometrial stem cells (41,80) 

Endometrial mesenchymal stem cells (42,43,70,90,109) 

Menstrual blood-derived endometrial stem cells (44,45,72,101,120) 

Menstrual blood-derived mesenchymal stem cells (15,30,46-48) 

Menstrual blood-derived stem cells (17,22,31,34,35,49-53) 

Menstrual blood stem cells (54,65,67,95,110) 

Menstrual-derived stem cells (55) 

Menstrual stem cells (3,29,56,97) 

Menstrual blood progenitor cells (57) 

Menstrual blood stromal stem cells (58,115) 

Menstrual blood-derived stromal stem cells (59,61,62,64) 
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observed when the cultured cells reached confluence. 

A homogenous cell population is noted upon appro-

aching confluence. It is noted that this morphology 

persisted at later passages (P10) 79. 

MenSCs express Cluster of Differentiation (CD) 9, 

CD29, CD44, CD73, CD90, CD105 and CD166 cell 

markers. From these markers, CD9, CD29, CD73, 

CD90 and CD105 are commonly expressed in Mesen-

chymal Stem Cells (MSC). MenSC do not express 

CD14, CD34, CD38, CD45 and CD117 81 nor haema-

topoietic stem cell markers such as CD34, CD45 and 

CD133 38. HLA-ABC was weakly expressed 81 while 

HLA-DR was not expressed indicating that MenSC 

have low immunogenicity 82. Both endometrial MSC 

and MenSC co-express CD140b and CD146 83-84 and 

these markers can be used to discriminate from endo-

metrial stromal fibroblast (CD146-CD140b+) and endo-

metrial endothelial cells (CD146+CD140b-) 85. Human 

telomerase reverse transcriptase is expressed by Men-

SC (38,51). Borlongan et al 86 reported expression of 

Stage Specific Embryo Antigen 4 (SSEA-4), homeo-

box protein NANOG and sex-determining region Y-

box 2 (SOX2). It was noted that MenSC have different 

stem cell marker profiles which is dependent on the 

environment 86. This might be a reason why expression 

of SSEA-4 varies from different studies ranging from 0 
87 to 19.4% 88. It was also speculated that the difference 

in stem cell marker profile of MenSC can also be due 

to other donor’s factors including age, contraception 

and environmental factors 77. MenSC are commonly 

identified by the expression of OCT-4 which an em-

bryonic stem cell surface marker 38,51,56,58. OCT-4 is not 

expressed by endometrial MSC 89,90 or Bone marrow-

derived Mesenchymal Stem/Stromal cells (BMSC) 91. 

The molecule perivascular sushi domain containing-2 

(SUSD2) specifies self-renewal and multipotency of 

MenSC 84.  

In the studies by Meng et al 38 and Wu et al 57 it was 

reported that MenSC obtained from healthy and young 

women could increase in number, as every 20 hr it 

increases to one doubling under optimal culture condi-

tions. MenSC doubling rate is twice faster than that of 

BMSC which is estimated at 40-45 hr 38,57. MenSC 

have a high proliferation rate which is due to the ele-

vated expression of Extracellular Matrix (ECM) and 

embryonic trophic factors 92. For future research, the 

high proliferation ability of MenSC is important, as 

usually cell therapy is dose-dependent and low passage 

cells are used. Moreover, no obvious chromosomal 

abnormality was observed when MenSC were expand-

ed in vitro. MenSC could have a huge clinical applica-

tion due to their high proliferation rate, genetic stability 

and pluripotency 38,57,58.  

Development of stem cells is associated to the Wnt 

signalling pathway. The Wnt signalling can regulate 

target genes that are downstream to mediate stem cell 

differentiation and proliferation 93,94. Transcription in 

the Wnt signalling pathway is initiated by transcription 

factor β-catenin binding to the promoter site on the 

Wnt-responsive genes. Cytoplasmic β-catenin in un-

stimulated cells is phosphorylated by Glycogen Syn-

thase Kinase 3 (GSK3). Inactivation of GSK3 occurs 

on binding of Wnt to Frizzled. Accumulation of cyto-

plasmic β-catenin occurs as a result of GSK3 inactiv-

ation and translocation to the nucleus to activate Wnt-

responsive genes 94. In a study by Kazemnejad et al 9, 

the role of Wnt signalling on MenSC proliferation was 

investigated. Different concentrations of Lithium chlo-

ride (LiCl) were used, since LiCl decreases MenSC 

proliferation in a dose-dependent manner. The expres-

sion of β-catenin increased with increasing concentra-

tion of LiCl, while MenSC proliferation was suppres-

sed. This study shows that Wnt signalling pathway 

plays a significant role in MenSC proliferation. Further 

studies are still required to investigate the Wnt signal-

ling in MenSC proliferation and differentiation into 

various lineages 79. The aim of this systematic review 

was to evaluate the non-gynaecological applications of 

MenSC.  

 

Materials and Methods 
 

A systematic search was performed within the elec-

tronic databases MEDLINE, EMBASE and "Cochrane 

Central Register of Controlled Trials (CENTRAL)" to 

identify all the articles on MenSC published in English 

language. The search was done from 2007 till August 

2020, week 4, and used the MeSH/EMTREE terms and 

keywords reported in appendix 1, 2 and 3.  

 

Results 
 

The total number of articles retrieved were 1295: 

584 from MEDLINE, 690 from EMBASE and 21 from 

Cochrane Central Register of Controlled Trials (Figure 

1). Three additional relevant articles were retrieved 

from other sources: one was published in a journal not 

indexed in MEDLINE (Ovid), EMBASE or CENTRAL" 
Chen et al 39, the other 2 were published in February 

2021, Xu et al 62 and March 2021, Lu et al 57. Thus, 

they could not be retrieved from the databases search.  
 

Clinical potential of MenSCs 
The therapeutic potential of MenSCs has been in-

vestigated in both preclinical and clinical studies (Ta-

bles 2 and 3). 
 

Wound healing 
MenSC have shown the ability to differentiate into 

keratinocytes and epidermal layer cells which can 

overcome some of the limitations of keratinocytes iso-

lation (such as low proliferation rate, time-consuming 

and difficult preparation procedures) (Table 4) 1,12,95. 

Hence, MenSC could be clinically used for treatment 

of dermatological lesions and skin transplant 12. Men-

SC improve chronic wound healing regeneration and 

repair through promotion of cell adherence, prolifer-

ation and differentiation 1,12,95. MenSC overexpress the 

migratory molecule chemokine receptor type 4 (CXC- 
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R4) which binds to stromal cell-derived factor 1 (SDF-

1) expressed by intrinsic fibroblasts, thus their mig-

ratory activity is directed to the site of injury 96. Men-

SC showed increased fibroblast migration under both 

basal and pro-inflammatory conditions. The hypoxic 

agent deferoxamine stimulated higher expression of 

Hypoxia-Inducible Factor (HIF)-1α in MenSC which  
 

displayed a higher angiogenic potential and increased 

factor expression [including Platelet Derived Growth 

Factor (PDGF), Vascular Endothelial Growth Factor 

(VEGF) and basic Fibroblast Growth Factor (bFGF)] 
97. In turn, the migratory ability of fibroblast can be 

positively regulated by bFGF via the wnt/β catenin 

signalling pathway activation 98. MenSC upregulated 

the genes involved in angiogenesis and neovasculari-

sation, such as angiopoietin 1 (ANGPT1), PDGFA, 

PDGFB and matrix metallopeptidase (MMPS), Extra-

cellular Matrix (ECM) components, Elastin (ELN) and 

MMP10 that during remodelling of tissue helps to re-

gulate collagen degradation 97. MenSC showed a lower 

expression of serpin family E member 2 (SERPINE2), 

which is an inhibitor of serine protease with anti-angio-

genic function, and lower expression of the pro-inflam-

matory Interleukin (IL)-1β 97,99. Transforming Growth 

Factor (TGF)B2, a factor involved in keloid formation 

was downregulated in MenSC 97,100. Table 2 explains 

the findings observed in wound regeneration in vivo.  
 

Central nervous system disorders  
In an in vitro model of Parkinson’s Disease (PD), 

when human neuroblastoma SH-SY5Y cells with neu-

rotoxin 1-methyl-4-phenylprudunuym (MPP+) were 

co-cultured in a culture medium obtained from MenSC, 

there was a significant increase in injured cell viability 

which could be due to increased anti-inflammatory cy-

tokine release. After treatment, a decrease of pro-in-

flammatory cytokines caused by neurotoxin, which  
 

Studies included in review 
(n=83) 

Reports of included studies 
(n=83) 
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From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline 

for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: http://www.prisma-statement.org/ 

 

Figure 1. PRISMA flow diagram study identification 
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Table 2. Preclinical animal studies involving menstrual-derived stem cells in non-gynaecological diseases 
 

Disease 
Animal model and route of 

administration 
Findings after MenSC treatment 

Wound healing 

 
C57bI/6 mice, injected intrader-
mal around each  

wound  97 

- Accelerated wound healing due to production of adhesion molecules ICAM-1 and VEGF 

- Increased vascular network formation with increased expression of pro-angiogenic factors 
VEGF, IL-8 

- High collagen deposition with gene upregulation of elastin, fibronectin, collagen and MMP 

- Presence of MenSC at site of injury for more than 2 weeks after skin transplantation 

Central nervous system disorders 

Alzheimer’s 
disease 

APPswe/PSEN1dE9 mice inject-
ed to hippocampus 15 

- Improved spatial learning and target-oriented swimming pattern 

- Reduced amyloid β plaque deposition 
- Improvement of microglia activation 

- Improvement of Tau hyperphosphorylation through inactivation of GSK-3β 

Stroke 
Rat stroke model, administered 

via IC or IV 102 

- No tumours or ectopic formations and no graft-versus-host complications 

- Reduced abnormal behaviour 

- Better motor coordination with IC injection 
- In the striatal ischemic penumbra, there were more surviving host cells 

Spinal cord 
injury 

Sprague-Dawley rats injected at 
the SCI site 105 

- Improved locomotor function 
- Improved tissue integrity due to reduced infiltration by cells of inflammation and reduced 

vacuolization 

- Reduced cavity formation 
- Neuronal cells survival rate increased at the site of injury 

- At the site of injury axonal regeneration was promoted 

- Secondary glial cell formation reduced 
- Pro-inflammatory factors supressed (IL-1β and TNF-α). BDNF expression enhanced 

Sciatic nerve 

regeneration 

Rat model implanted with seed-

ed neural guidance conduit 106 

- Prevention of muscle weight loss 

- Hot plate latency test was low 

- Sciatic nerve function improved 

Musculo-skeletal disorders 

Osteochondral 
repair 

New Zealand rabbits, implanta-

tion of encapsulated MenSC in 

fibrin glue 110 

- No immune rejection 

- Defect after 3 months filled with Hyaline cartilage-like 
- Tissue well regenerated 

- Better amount of glycosaminoglycan 

Duchene mus-

cular dystro-
phy 

NOG mice or mdx-scid mice, 

injected intramuscular 18 

- Detection of MenSC between myocytes after 1 to 3 weeks from implantation. 
- Differentiation into myoblasts 

- Expression of human dystrophin in dystrophic mice 

- Improvement of muscle regeneration 

Limb ischae-

mia 

Mouse hind limb ischaemia 

models. Injection at the site of 
ischemia or via the tail vein 19 

- Improvement of ischaemia and decrease in the degree of ischaemic damage 
- Muscle tissue functional and alive  

- Reduced tissue oedema and smooth blood vessels with cell survival improvement 

- Vasculogenesis and angiogenesis 

Cardiovascular disorders 

Myocardial 

infarction 

- F344 nude rats 116 
- Sprague-Dawley rats 20,120 

- C57BL/6 (H‐2b), BALB/c 

(H‐2d), and C3H (H‐2k) mice 143 

- Improved cardiac function 

- Improved left ventricular fractional shortening 
- Improved ejection fraction 

- MI size reduced  

- Thickness of left ventricle increased 
- Collagen deposits reduced 

- Inhibition of the transition of endothelial to mesenchymal which contributes to tissue fi-

brosis progression 

Respiratory disorders 

Interstitial 

lung disease 

BLM-induced C57BL/6J  

wild-type mice, injected via tail 

vein 120-122 

 

- Pulmonary fibrosis improved due to regulation of alveolar epithelial cell apoptosis and less 

collagen deposits 

- Anti-fibrotic factors HGF and MMP-9 were elevated 
- Reduced inflammation levels and pulmonary oedema 

- Decreased interstitial hyperplasia 

- Protective effect on pulmonary fibrosis due to reduction for fibre formation and promotion 

of recovery of lung fibrosis. 

- mtDNA damage, ROS and apoptosis were decreased which may have protective role on 

fibrosis and alveolar cell damage 
- Attenuation of oxidative stress 
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Contd. Table 2. Preclinical animal studies involving menstrual-derived stem cells in non-gynaecological diseases 
 

Disease 
Animal model and route of 

administration 
Findings after MenSC treatment 

Acute lung injury 

ALI induced by lipopolysaccha-
rides in mice model, transplanted 

IV  122,144 

- Alleviation of inflammation 

- Increased the dry/wet ratio and mitigation of the thickened texture of the lung caused by 
the damage 

- Improvement of lung histopathology 

- Decreased oedema 
- Increase in sO2% and paO2/FiO2 ratio 

- Inflammation reduced 

- Improvement of pulmonary microvascular permeability 

Gastrointestinal disorders 

Ulcerative colitis 
BALB/c mice model DSS-

induced colitis injected IV 127,128 

- Less loss of body weight 

- Firmer stool and prevented bloody stool 

- Increased water and food consumption 
- Longer colon length and no bowel dilation 

- Ulceration almost healed 

- Relived oedema and mucosal hyperaemia  
- Improved structure of crypts and epithelium 

- Down regulation of autoimmune reaction and immune tolerance maintenance reducing 
colitis 

- Decreased inflammation 

Liver   

 
Acute liver 

injury 

BALB/c mice 130,76,145 or 

C57BL/6 mice 129 injected intra-
venously 

- ALT, AST, urea and total bilirubin were reduced 
- Rapid improvement of liver regeneration 

- Alleviation of cytoplasmic vacuolization, infiltration of inflammatory cells and necrosis 

- Restore the recovery of glycogen storage  
- Improvement of histopathological appearance of the liver 

- Decrease deposition of collagen fibres in liver 

- Increased number of hepatocytes and parenchymal cells 

- Lesser necrotic areas 

- Lower cell apoptosis  

- Suppression of inflammation with alleviation of damage 

 Liver fibrosis C57BL/6 mice, IV injected 132 

- Reduction of collagen deposition 

- Liver function improved 

- Reduce liver fibrosis 
- Reduced inflammation 

 Diabetes C57BL/6 mice injected IV 25,26 

- MenSC located at islet structures, ductal and exocrine of the pancreas 

- Improved polyuria 
- Stable weight 

- Reduced hyperglycaemia 

- Improved insulin levels 
- Glucose tolerance improved  

- Improved survival rate 

- Higher islet size and β-cell number 

- Angiogenesis promotion 

- Enhanced re-epithelialization 

- Wound closure enhancement 

Cancer 

 Glioma Nude mice, IV 30 

- Infected MenSC were able to migrate to the glioma 

- Tumour cells decreased in viability and apoptosis increased by 20% after exposure to in-

fected MenSC 
- Tumour size decreased, tumour growth inhibition and tumour apoptosis induced by TRAIL 

 
Hepatocellular 
carcinoma 

Balb/c nude mice injected in tail 
vein 138 

- Reduced proliferation of tumour (Ki67 expression reduced) 

 
Prostate  
tumour 

NOD mice 29 - Angiogenic properties of the secretome derived from tumour cells were inhibited 

 

Oral squa-

mous carci-

noma 

Syrian golden hamsters 28 
- SCC growth inhibition, with reduced tumour size and weight 

- Weaker angiogenesis with significant reduction in vascular area and vessel density 

 

ALI: Acute Lung Injury, ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, BDNF: Brain-Derived Neurotropic Factor, BLM: Bleomycin, DSS: Dextran 

Sulfate Sodium, FiO2: Fraction of Inspired Oxygen, GSK-3β: Glycogen Synthase Kinase 3 beta, HGF: Hepatocyte Growth Factor, IC: Intracranial, ICAM-1: Intracellular 

Adhesion Molecule 1, IL: Interleukin, IV: Intravenous, MenSC: Menstrual-derived Stem Cells, MI: Myocardial Infarction, MMP: Matrix Metalloproteinase, mtDNA: mito-

chondrial Deoxyribonucleic acid, paO2: Arterial Pressure of Oxygen, ROS: Reactive Oxygen Species, SCC: Squamous Cell Carcinoma, SCI-spinal Cord Injury, sO2%: 

Oxygen Saturation, TNF: Tumour Necrosis Factor, TRAIL: Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand, VEGF: Vascular Endothelial Growth Factor. 
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include IL-1β, IL-6, inducible Nitric Oxide Synthase 

(iNOS), Cyclooxygenase (COX-2) and Tumour Nec-

rosis Factor (TNF)-α, was observed. The anti-apoptotic 

and antioxidant effects of MenSC culture medium 

could be caused by the presence of Neurotropin (NT)-

3, NT-4, Brain-Derived Neuro-trophic Factor (BDNF) 

and Epidermal Growth Factor (EGF) factors 101.  

MenSC transplantation in a mice model of Alzhei-

mer’s Disease (AD) showed amelioration of changes in 

the brain (Table 2). β-secretase (BACE1) and C-ter-

minal fragment (β-CTF) levels, which are part of amy-

loidogenic pathway, were decreased. After MenSC 

treatment, the activated microglia were induced to ex-

press an alternative phenotype, instead of the neuro-

toxic phenotype characterised by anti-inflammatory 

cytokines secretions. IL-1β and TNF-α (pro-inflamma-

tory factors) were significantly decreased, while the 

anti-inflammatory cytokine IL-4 was increased. There 

was also increase in messenger ribonucleic acid 

(mRNA) levels of cluster of differentiation (CD)-206, 

YM1, arginase-1 (Arg1) and found in inflammatory 

zone 1 (Fizz1), which are markers of anti-inflammatory 

alternative activation of macrophages 15. 

Upon culturing of MenSC with neurons in a rat 

stroke model, protection against ischemia-induced cell 

death was observed. This could be due to elevation of 

trophic factors VEGF, BDNF and NT-3 102 which are 

reported to mediate therapeutic benefits of stem cell 

transplantation in various Central Nervous System 

(CNS) disorders 103,104. In rat ischaemic model, motor 

and neurological impairment was improved (Table 2). 

MenSC survived in the ischaemic striatal penumbra 

and the cells were detected even after 14 days since 

MenSC transplantation. Graft survival was better when 

administration of MenSC was given Intracranially (IC) 

rather than Intravenously (IV) (15% survival rate for 

IC vs. 1% for IV) 102. 

For the first time, the study by Zhong et al 16 

demonstrated the feasibility of MenSC administration 

in 4 patients suffering from Multiple Sclerosis (MS) 

(Table 3). This study shows promise for future use of 

MenSC in clinical settings, as no immunoreaction or 

ectopic tissue were observed at the site of injection 16. 

Rat with spinal cord injury treated with MenSC show-

ed improved locomotor function, increased neuronal 

survival rate and preservation of tissue (Table 2). Neu- 
 

Table 3. Clinical studies involving potential applications of menstrual derived stem cells in humans 
 

Disease 
Human participant details and route 

of administration 
Findings after MenSC treatment 

Multiple sclerosis 
4 patients suffering from MS injected 

intravenously or intrathecal 16 

- No immediate immune-reactivity or ectopic tissue formation at injection site 
- No abnormalities caused by MenSC administration was observed on physical 

examination, biochemical tests and chest X-ray 

- No objective neurological disease progression up to the date of publication 

Duchene muscular 

dystrophy 

Combination treatment of MenSC and 

CD34 umbilical cord blood 112 

- No adverse reaction 

- Increased number of muscle cells 
- Improved upper extremity function 

- Decrease of respiratory infections 

- Normal levels of dystrophin from a muscle biopsy 

Congestive heart 

failure 

60 patients suffering from non-

ischaemic and ischaemic CHF. Delivery 

via retrograde coronary sinus 118 
1 patient injected with MenSC and cord 

blood via IV 119 

- No serious adverse event 

- Improvement of ejection fraction 

- Reduction in pro-brain natriuretic peptide 
- Questionnaire score of the Minnesota living with heart failure was decreased 

- No abnormalities observed on physical examination and chest x-ray 

H7N9 17 patients 126 

- Higher survival rate after treatment when compared to control group 

- No significant difference in the functions of FVC, FEV and forced expiratory 
flow at 50% vital capacity 

- Improvement in Hb levels and decrease in PT levels 

- Improvement on CCT 

COVID-19 

26 severe and critically ill patients in-
jected with 3 infusions of MenSC from 

the same donor 125 

- Improvement of cough from day 1 

- Expiratory dyspnoea improvement from day 1 

- Higher survival rate when compared to control (92.31% survival for MenSC 
treatment and 66.67% survival for control population) 

- Treated group improved in their medical condition by 5.8 days shorter than con-

trol 
- 85% of patients treated with menstrual stem cells showed CCT improvement 

compared to the 50% from the control group 

- Amelioration of fibrosis 
- Improved SaO2 and PaO2 

1 patient 22 

- Reduced inflammatory cytokines 

- Clinical condition improvement 

- Improvement of consolidations that where present in the lung 
 

CCT: Chest Computer Tomography, CD34: Cluster of Differentiation 34, CHF: Congestive Heart Failure, FEV: Forced Expiration Volume, FVC: Forced Vital Capacity, Hb: 

Haemoglobin, IV: Intravenous, MS: Multiple Sclerosis; PT: Prothrombin Time. 
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ronal survival rate increased in parallel with the in-

crease of neuronal and glial cell markers neurofilament 

protein (NF)-200 and Microtubule-Associated Protein 

2 (MAP-2) significant increase 105. MenSC transplant-

ation with neural guidance conduits in a rat model 

showed significant improvement in the sciatic nerve 

injury. The reasons for this improvement might be due 

to the continuous secretion of neurotrophic factor and 

matrix protein by cells which assist in nerve repair 106. 

MenSC induce angiogenesis which is essential for neu-

ral cell repair and functional recovery after nerve injury 
8,107.  
 

Musculo-skeletal disorders 
MenSC have a chondrogenic differentiation poten-

tial, which translates in the expression of Collagen 9A1 

and SRY-Box Transcription Factor 9 (SOX9) at mRNA 

level, similarly to cartilage tissue 108. Insulin-like 

Growth Factor-Binding Protein 3 (IGFBP3) lacking 

MenSC were able to differentiate into chondrogenic 

lineage which could be due to higher sensitivity to the 

chondrogenic promotor factor, Insulin Growth Factor 1 

(IGF-1) 109. Moreover, improvement was observed in 

osteochondral defect in vivo (Table 2) 110. 

In mice models of Duchenne Muscular Dystrophy 

(DMD), MenSC exhibited extensive migratory ability 

and infiltration between muscular fibres. MenSC ex-

hibited a myoblast differentiation, which could be an 

important finding for the future treatment of muscular 

diseases. Exposure of MenSC to 5-azacytidine pro-

vides the highest desmin positive MenSC. MenSC do 

not express the genes Myogenic factor 5 (Myf5) and 

myosin heavy chain IIx/D (MyHC-IIx/d); however, the 

genes desmin, myogenic differentiation protein (My-

oD) and dystrophin were expressed. MenSC admin-

istration improved dystrophin delivery and muscle re-

generation 18. On the contrary, in the study by Ay et al 
111. MenSC seeded on synthetic scaffold did not exhibit 

spontaneous differentiation and did not attach to the 

synthetic fibres 111. MenSC have been tested on a hu-

man individual with DMD and clinical improvement 

was observed and maintained for at least 2 years (Table 

3) 112. 

MenSC, when co-cultured with nucleus pulposus 

cells, show higher cell density and secretion of coll-

agen II and aggrecan, which are important in functional  
 

maintenance of the intervertebral disc. Keratin 19 

(KRT19), Carbonic Anhydrase 12 (CA12) and Fork-

head box F1 (FOXF1) genes are markers for nucleus 

pulposus and they are significantly enhanced in co-

culture with MenSC. This indicates that MenSC may 

have possible repair potential on nucleus pulposus 113. 

MenSC injected in mouse limb ischemia models at 

the site of ischemia shows significant improvement in 

the ischaemic area, especially when compared to un-

treated mice (Table 2). The best results have been ob-

tained in the group of mice that were injected and in-

fused with MenSC. Intramuscularly (IM) injected mice 

showed better improvement than IV injected mice. 

MenSC transplantation, due to the factors secreted 

(VEGF, BDNF, NT-3) aid in the formation of small 

Table 4. Cellular differentiation ability of menstrual-derived stem cells 
 

MenSC differentiation Contents of the culture medium 
Expression of markers that confirm 

differentiation 

Osteogenic differentiation 
Dexamethasone, ascorbate, glutamine, penicillin-streptomycin, β-

glycerophosphate and FBS 7 
OSTF1 139 

Adipogenic differentiation Adipogenic medium 
Adipogenic markers; PPAR-γ, LEPR and  

LPL 140 

Chondrogenic differentiation 

Insulin-transferrin-selenium, DMEM-HG, streptomy-
cin/penicillin, dexamethasone, ascorbic acid-2 phosphate, sodium 

pyruvate and TGF-β1 8 

Chondrogenic markers; IGF-1, FGF2, 

Activin and Collagen 2 protein 141 

Keratinocyte differentiation  MenSC co-cultured with keratinocytes derived from foreskin 
Keratinocyte markers; keratin 14, p63 

and involucrin IVL 95 

Neural-like cell differentiation 

Serum-free P4-8F medium fortified with FGF-2 and EGF. For 
induction of terminal neural differentiation the culture is com-

posed of neurobasal medium with BDNF, FBS, horse serum, 

nitrogen supplement, penicillin/ streptomycin and all-trans retin-
oic acid 9 

Nestin, GFAP, MAP2, GABBR-1, 
GABBR2 and TUBB3  9,142 

Cardiomyocyte-like cell differentiation DMEM containing 5-azacytidine and bFGF Connexin 43 and troponin T expression 21 

Hepatocyte-like cell differentiation 

Media supplemented with dexamethasone, insulin, transferrin, 

selenium, NTA and HGF were used initially to induce differen-

tiation. Medium used for maturation contains FBS, DEXA, 
ITS+1 and OSM 

Albumin and CK-18 10 

 

bFGF: basic Fibroblast Growth Factor, CK-18: Cytokeratin 18, DMEM-HG: Dulbecco’s Modified Eagle’s High Glucose, FBS: Foetal Bovine Serum, FGF2: Fibroblast 

Growth Factor-2, GABBR: Gamma-aminobutyric Acid type B Receptor, GFAP: Glial Fibrillary Acid Protein, HGF: Hepatocyte Growth Factor, IGF-1: Insulin-like Growth 

Factor 1, ITS+1: Insulin Transferrin Selenium pre-mix, LEPR: Leptin Receptor, LPL: Lipoprotein Lipase, MAP2: Microtubule-Associated Protein 2, MenSC: Menstrual 

Derived Stem Cells, OSM; Oncostatin M, OSTF1: Osteoclast-Stimulating Factor-1, PPAR-γ: Peroxisome Proliferator-Activated Receptor Gamma, TGF-β1: Transforming 

Growth Factor beta 1, TUBB3: Tubulin beta 3 Class III. 
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vessels in Critical Limb Ischemia (CLI) mice 19. There 

is an ongoing human phase I/II clinical trial of MenSC 

in CLI patients 114. 

MenSC, when co-cultured with Achilles tendon 

cells, show the ability to differentiate into tenogenic 

cells. The differentiated MenSC express the genes for 

collagen I and collagen III which are important for 

maintenance of tendon function. The Achilles tendon 

markers Thrombospondin-4 (THBS4), Tenascin C 

(TENC) and scleraxis (Scx) are expressed and ECM is 

produced which is similar to the origin of Achilles ten-

don 115.  
 

Cardiovascular disorders 
To mimic myocardial infarction, MenSC have been 

cultured in vitro with hydrogen peroxide (H2O2)-

induced injured rat cardiomyocyte cells. An increased 

cell viability rate and inhibition on the rate of apoptosis 

was observed. The altered mitochondrial function ob-

served in H2O2 treated cells was restored when these 

cells were co-cultured with MenSC. MenSC co-culture 

decreased the levels of pro-apoptotic proteins such as 

Bcl-2-associated X protein (Bax) and increased the 

levels of anti-apoptotic protein B-cell lymphoma (Bcl)-

2 which was observed in H2O2 treated cells. Moreover, 

the migration ability of H2O2 treated H9c2 cardio-

myocytes was increased when co-cultured with Men-

SC, due to upregulation of N-cadherin 7. In vivo, im-

proved cardiac function has been reported (Table 2) 

due to high in situ cardiomyogenic transdifferentiation 

ability of MenSC, showing clear striation and sarco-

meric α-actinin 116. However, this is in contrast to the 

studies by Zhang et al 20 and Jiang et al 117 in which 

MenSC did not differentiate into cardiac lineage except 

for a small number of endothelial cells.  

There is an ongoing clinical trial aiming to treat 

with MenSC 60 individuals with Congestive Heart 

Failure (CHF). Preliminary data on 17 patients showed 

no serious adverse event 1181. Another study reported a 

74-year-old patient with CHF who received 5 shots of 

MenSC and cord blood via IV in a period of 7 months 

(Table 3) 119.  
 

Respiratory system disorders 
MenSC and MenSC derived exosomes have been 

administered to Bleomycin (BLM)-induced mice mod-

el and pulmonary fibrosis improved, as alveolar epithe-

lial cell apoptosis were regulated 120,124. MenSC were 

principally captured and absorbed in the lungs when 

injected through the tail vein 120,122. The mice model 

showed significant improvement in pulmonary fibrosis 

(Table 2) 120-122. Zhao et al 121  reported that MenSC 

acted on the microenvironment of fibrosis with in-

crease of anti-fibrotic factors, such as Hepatocyte 

Growth Factor (HGF) and MMP-9. The apoptotic fac-

tor Bax expression is reduced in lung tissue after 

MenSC treatment which might offer protection to alve-

olar epithelium cells from apoptotic damage. Secretion 

of TGF-β, which has a critical role in the changes ob-

served in interstitial lung disease, has been shown to be 

reduced after MenSC treatment, thus potentially ex-

plaining why pulmonary fibrosis is alleviated after 

treatment 121.  

In vivo and in vitro results in Acute Lung Injury 

(ALI) show that MenSC can migrate and stay in the 

injured area. In vivo improvement of lung function 

even at histological level was reported (Table 2). Men-

SC regulate the expression of cytokines to attenuate the 

inflammatory response 122,123. The mitogen Keratino-

cyte Growth Factor (KGF) expression increased after  
 

treatment with MenSC 123. The proliferative index has 

increased while caspase 3, an apoptotic index was re-

duced after treatment. Levels of proteins Phosphoinosi-

tide 3-kinase (PI3K), β-catenin and Vascular Endothe-

lial (VE)-cadherin were increased after MenSC treat-

ment, while downregulation of phosphoglycogen syn-

thase kinase 3 beta (p-gsk3β), p-β-catenin and p-src 

was observed. The increase in VE-cadherin and β-

catenin suggests that pulmonary microvascular perme-

ability is improved after MenSC transplantation 122. 

A clinical trial on humans with H7N9 infection was 

performed and even after 5 years from therapy amelio-

ration of symptoms related to H7N9 infection have 

been reported (Table 3). However, the evaluation on 

the long-term effects of MenSC on all patients was not 

possible as some refused follow-up, which is a limita-

tion of the study. The first results of a clinical trial 

conducted on 26 COVID-19 patients treated with Men-

SC (ChiCTR2000029606) 123 have reported ameliora-

tion of clinical manifestations (Table 3) 124.  Men-SC 

have already shown therapeutic potential in H7N9 pa-

tients who share similar clinical manifestation to 

COVID-19 patients 125.  
 

Gastrointestinal disorders 
MenSC treatment in animal models of ulcerative co-

litis has led to an amelioration of clinical symptoms, 

signs and histological alterations (Table 2). There is a 

reduction in macrophages-1 positive cell infiltration 

and intra-colon neutrophils in MenSC treated mice. 

The anti-inflammatory IL-4 and IL-10 were up-re-

gulated, while the pro-inflammatory cytokines IL-2 

and TNF-α were downregulated. CD11c+MHC-II+ DC 

were decreased in MenSC treatment, which indicates  
 

that MenSC exhibit an immunomodulatory effect in 

controlling colitis development. CD3+CD25+ active T 

cells have also been downregulated. In mice treated 

with MenSC there was an increase of CD4+CD25+  
 

Foxp3+ Tregs, which is related to immune tolerance 

maintenance and autoimmune reaction downregulation, 

leading to reduction of colitis. CD3+CD8+ T cell levels 

were reduced, which improves cytotoxicity and im-

mune system dysfunction 126. Programmed Death-

Ligand 1 (PD-L1) which is important in immune sup-

pression was expressed on MenSC cell surface and 

increased with stimulating factor concentration. This 

has contributed to reduced proliferation of inflam-
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matory cells and effector function. It was reported that 

blockage of PD-L1 reduced MenSC efficacy in colitis 

treatment, since MenSC require PD-L1 for colitis at-

tenuation. Inflammation in colitis is reduced by MenSC 

via PD-L1, by reducing neutrophils, CD3+ T cells and 

increasing alternatively activated macro-phages 127. 

In animal models of liver fibrosis, MenSC have 

shown migratory ability into the liver lobule 128. The 

liver function tests have improved after transplantation 

(Table 2). In fact, there was rapid improvement of liver 

regeneration which indicate that the main mechanisms 

of liver repair by MenSC is unlikely to be by homing 

or by transdifferentiation. Instead, the likely mecha-

nism of action is by trophic effect for hepatic tissue 

regeneration. Efficiency in liver regeneration by Men-

SC was the same in male and female mice models, 

indicating no gender difference in treatment outcomes, 

unlike other types of stem cells 129. MenSC can reduce 

lymphocyte antigen 6 complex locus G6D (Ly6G) pos-

itive cells in the liver. This gives an indication that 

MenSC act by suppressing infiltration of inflammatory 

cells to alleviate damage. MenSC was able to inhibit 

monocytes differentiation into dendritic cells to control 

liver injury. T cell accumulation is also inhibited as 

MenSC shows a reduced expression of CD4+ and CD8+ 

T cells 128. miR-122 hepatic levels correlate with the 

severity of liver damage and are downregulated after 

MenSC treatment 130. LX-2 human hepatic stellate cell 

proliferation is suppressed by MenSC, therefore in-

dicating inhibition of stellate cells. There are increased 

levels of the anti-inflammatory Monocyte Chemoat-

tractant Protein-1 (MCP-1), while the secretion of pro-

inflammatory IL-6 is reduced by MenSC. This in-

dicates protective factor properties during the initial 

stages of fibrogenesis. Although MenSC are able to 

ameliorate liver fibrosis, in order to reduce liver fibro-

sis there needs to be replenishing of hepatocytes 131. In 

vitro MenSC differentiate into hepatic lineage 10,132, 

however, in vivo only few cells differentiated. This 

could be due to the complex microenvironment 131. 

Hepatocyte marker genes are present in liver-like cells 

derived from MenSC including Albumin (ALB), Cyto-

chrome (CY) P450, CYP3A4, CYP1A1, CYP7A1, Al-

pha Fetoprotein (AFP) and Cytokeratin (CK)-19 10, 

132,133. Other detoxification enzymes expressed are Glu-

tathione S-transferase (GST)-A1, GSTA2 and GSTP1 
133. 
 

Endocrine disorders 
The use of MenSC in vivo in diabetic mice models 

shows MenSC distribution in various organs but main-

ly in the pancreas, which could be due to the signals 

secreted by the injured area. Symptoms and pancreas 

morphology in diabetic mice model were improved 

(Table 2). Upon testing there was no insulin or human 

C-peptide detected, which indicates that MenSC did 

not differentiate into insulin-producing cells in the in-

jured pancreas 25. MenSC were able to activate endo-

crine progenitor cells which reside in the duct, islet and 

exocrine tissue, and insulin increased indicating that 

MenSC promote the differentiation of pancreatic pro-

genitor cells to β cells. Genes of β-cell development 

pancreas/duodenum homeobox protein 1 (pdx1) 25,134, 

forkhead box protein A2 (foxa2), nkx6.1, neurogenin-3 

(ngn3), paired box 4 (pax4) and mafb were upregulated 

in MenSC treated mice which enhances β-cell genera-

tion. Genes associated with mature β-cell such as mafa, 

insulin and glucose transporter 2 (glut 2) were also 

upregulated 25. 
 

Cancer 
MenSC have been tested in vivo in animal models of 

different tumours, including glioma 30, Squamous Cell 

Carcinoma (SCC) 28, Hepatocellular Carcinoma (HCC) 
135 and prostate carcinoma 29 (Table 2). MenSC were 

able to migrate to the tumour location, even when in-

fected with adenovirus AD35-sTRAIL 30. It has been 

reported that MenSC interact with tumour cells via  
 

paracrine mechanisms 30,135. Tumour growth (weight 

and volume) was reduced after treatment 28,30,135. In 

HCC the proliferation rate of the tumour was reduced. 

Tet methylcytosine dioxygenase (TET)-1 and TET2 

expression was increased in hepatocyte cells after co-

culture with MenSC. This indicates that MenSC regu-

late DNA methylation via various methylation en-

zymes. MenSC can regulate epigenetic mechanisms 

found in HCC cells 135. Inhibition of angiogenesis was 

observed in prostate carcinoma 29 and SCC 28. In pros-

tate tumour, after MenSC treatment, levels of VEGF 

and NF-κB activity were reduced 29. 

 
Discussion 

 

An increased interest on these types of cells was 

shown by researchers due to the various advantages  
 

MenSC exhibit. MenSC are procured by an easy non-

invasive method, they are abundant and a continuous 

source, they have low immunogenicity, high prolifer-

ation rate, differentiation ability into different lineages 

and lack of ethical issue 77. They can be obtained peri- 
 

odically and this is crucial for clinical efficiency. 

Sources such as bone marrow are obtained invasively 

and their number of culture passages are limited until 

the cells lose their stem cell potential and therefore  
 

MenSC are better in this aspect. Periodic collection can 

produce higher therapeutic dosages from the same ge-

netical background. In addition, there are other func- 
 

tional properties of MenSC which can underlie specific 

uses. MenSC have a high proliferation rate and are able 

to differentiate in multiple cell lineages 56,77. Further-

more, MenSC have the ability to expand without losing 

the normality of the karyotype or tumorigenic potential 

up to 68 doubling 38,58. MenSC therapeutic potential 

has been studied in various areas both in vitro and in 

vivo (animal models and humans). However, although 

no adverse events were reported after MenSC treat-

ment in humans and therapeutic effects were observed 

in a study on multiple sclerosis 136 and AS 61, more 
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studies are required to evaluate any challenges prior to 

MenSC application in a routine setting. 

There are also some limitations to use of MenSC 

that need to be acknowledged. MenSC have high rate 

of proliferation, however, time is required for the cells 

to multiply and achieve quantities which are sufficient 

for therapeutic applications. Collection of MenSC can 

be obtained only from pre-menopausal women; how-

ever, also males and post-menopausal women are 

prone to diseases such as stroke and neurodegenerative 

disorders. This problem could be solved by educating 

females on the potential therapeutic applications of 

menstrual cells and by offering harvesting and cryo-

preservation to pre-menopausal women for future au-

tologous use. Allogenic menstrual blood can be used to 

treat males and even post-menopausal women 43. 

Although MenSC exhibit some limitations, they also 

exhibit various advantages which may outweigh these 

limitations. They have shown a potential in future ther-

apy in various areas. It is important that further studies, 

especially in humans, do not just evaluate the long-

term safety of MenSC but also the effects of MenSC on 

various diseases. Moreover, establishing a protocol that 

maximizes the therapeutic potential of MenSC with 

limited adverse reactions is also crucial 137. It is im-

portant that a standardized protocol is devised for 

MenSC according to the diseases and also to the differ-

ent age groups that might receive this treatment. Vari-

ous routes of MenSC administration have been investi-

gated and there is the need for studies which focus on 

the best method to transplant MenSC to achieve maxi-

mal therapeutic benefit according to the disorder. 

MenSC have shown therapeutic effects in various dis-

eases, however, the underlying mechanisms and signal 

pathways are still unknown 39,138. Although more work 

is required on MenSC, they have shown multi-

functional roles in the treatment of various diseases in 

preclinical research which paves the way for further 

development of MenSC therapy in clinical and regen-

erative medicine 39.  
 

Conclusion 
 

MenSC have shown a very promising therapeutic 

effect in various diseases. Studies conducted in humans 

with H7N9, COVID-19, CHF, MS and DMD reported 

positive therapeutic effects without any adverse events. 

However, more studies are required to evaluate any 

challenges prior to MenSC application in a routine 

setting. Further research on MenSCs is required regard-

ing age of donor, transplantation routes, appropriate 

dose, eligible conditions, long-term monitoring and 

mechanisms of action. It is important that a standard-

ised protocol is devised for MenSC according to the 

diseases and to the different age groups that might re-

ceive this treatment. No long-term data on MenSC ex-

ist and therefore more studies should focus on this as-

pect to examine their long-term safety and the survival 

time of MenSC. Although more work is required on 

MenSC, they have shown multi-functional roles in the 

treatment of various diseases in preclinical research 

which paves the way for further development of Men-

SC therapy in clinical and regenerative medicine. The 

ease of rapidly obtaining MenSC in large amounts 

makes them unique, thus sperheading their application 

in clinical practice. 
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Appendix 1. Medline (ovid) (from 2007 to august 2020, week 4) 
 

 Search Results 

1 Menstrual blood-derived stem cell*.mp. 37 

2 Menstrual blood-derived stromal stem cell*.mp. 3 

3 Menstrual blood-derived mesenchymal stem cell*.mp. 15 

4 Menstrual blood-derived endometrial stem cell*.mp. 4 

5 Menstrual blood-derived cell*.mp. 3 

6 Menstrual blood-derived stromal cell*.mp. 4 

7 Menstrual blood-derived progenitor cell*.mp. 0 

8 Menstrual blood-derived regenerative cell*.mp. 0 

9 Menstrual stem cell*.mp. 5 

10 Menstrual blood stem cell*.mp. 23 

11 Menstrual blood stromal stem cell*.mp. 3 

12 Menstrual blood progenitor cell*.mp. 1 

13 Menstrual-derived stem cell*.mp. 2 

14 Endometrial stem cell*.mp. 139 

15 Endometrial stromal stem cell*.mp. 7 

16 Endometrial mesenchymal stem cell*.mp. 59 

17 Endometrial progenitor cell*.mp. 8 

18 Endometrial regenerative cell*.mp. 17 

19 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 286 

20 exp Menstruation/  15,751 

21 exp Endometrium/ 32,210 

22 20 or 21 46,533 

23 exp Stem Cells/  216,632 

24 exp Mesenchymal Stem Cells/ 37,597 

25 23 or 24 216,632 

26 22 and 25 571 

27 19 or 26 660 

28 limit 27 to yr="2007 - 2020" 612 

29 limit 28 to english language 584 
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Appendix 2. Embase (from 2007 to august 2020, week 4) 
 

 Search Results 

#1 'Menstrual blood-derived stem cell*' 68 

#2 'Menstrual blood-derived stromal stem cell*' 4 

#3 'Menstrual blood-derived mesenchymal stem cell*' 34 

#4 'Menstrual blood-derived endometrial stem cell*' 7 

#5 'Menstrual blood-derived cell*' 5 

#6 'Menstrual blood-derived stromal cell*' 8 

#7 'Menstrual blood-derived progenitor cell*' 0 

#8 'Menstrual blood-derived regenerative cell*' 0 

#9 'Menstrual stem cell*' 15 

#10 'Menstrual blood stem cell*' 59 

#11 'Menstrual blood stromal stem cell*' 10 

#12 'Menstrual blood progenitor cell*' 1 

#13 'Menstrual-derived stem cell*' 8 

#14 'Endometrial stem cell*' 320 

#15 'Endometrial stromal stem cell*' 15 

#16 'Endometrial mesenchymal stem cell*' 144 

#17 'Endometrial progenitor cell*' 12 

#18 'Endometrial regenerative cell*' 32 

#19 
#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR 

#14 OR #15 OR #16 OR #17 OR #18 
632 

#20 'Menstruation'/exp 23,693 

#21 'Endometrium'/exp 34,082 

#22 #20 OR #21 56,053 

#23 'Stem cell'/exp 378,513 

#24 'Mesenchymal stem cell'/exp 60,648 

#25 #23 OR #24 378,513 

#26 #22 AND #25 808 

#27 #19 OR #26 1,212 

#28 #27 AND ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim) 434 

#29 #27 NOT #28 778 

#30 #29 AND [english]/lim 728 

#31 #30 AND [2007-2020]/py 690 
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Appendix 3. Cochrane central register of controlled trials (EBSCO) (from 2007 to august 2020, week 4) 
 

 Search Results 

S1 Menstrual blood-derived stem cell* 4 

S2 Menstrual blood-derived stromal stem cell* 1 

S3 Menstrual blood-derived mesenchymal stem cell * 1 

S4 Menstrual blood-derived endometrial stem cell* 0 

S5 Menstrual blood-derived cell* 4 

S6 Menstrual blood-derived stromal cell* 1 

S7 Menstrual blood-derived progenitor cell* 0 

S8 Menstrual blood-derived regenerative cell* 0 

S9 Menstrual stem cell* 8 

S10 Menstrual blood stem cell* 5 

S11 Menstrual blood stromal stem cell* 2 

S12 Menstrual blood progenitor cell* 0 

S13 Menstrual-derived stem cell* 0 

S14 Endometrial stem cell* 12 

S15 Endometrial stromal stem cell* 0 

S16 Endometrial mesenchymal stem cell* 7 

S17 Endometrial progenitor cell* 5 

S18 Endometrial regenerative cell* 0 

S19 
S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR 

S15 OR S16 OR S17 OR S18 
21 

S20 (MW menstrual) OR (MW menstruation)  1,489 

S21 (MW endometrial) or (MW endometrium)  1,673 

S22 S20 or S21 3,047 

S23 MW stem cells 2,493 

S24 MW mesenchymal stem cells  213 

S25 S23 OR S24 2,493 

S26 S22 AND S25 1 

S27 S19 OR S26 22 

S28 S27 Limiters - Published Date: 20070101-20201231 21 

 


