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Abstract  

Background: Despite the success of "direct-acting antivirals" in treating Hepatitis C 

Virus (HCV) infection, invention of a preventive HCV vaccine is crucial for global 

elimination of the virus. Recent data indicated the importance of the induction of Pan-

genomic neutralizing Antibodies (PnAbs) against heterogenic HCV Envelope 2(E2), the 

cellular receptor binding antigen, by any HCV vaccine candidate. To overcome HCVE2 

heterogeneity, "generation of consensus HCVE2 sequences" is proposed. However, 

Consensus Sequence (CS) generating algorithms such as "Threshold" and "Majority" 

have certain limitations including "Threshold-rigidity" which leads to induction of un-

defined residues and insensitivity of the "Majority" towards the "evolutionary cost of 

residual substitutions".  

Methods: Herein, first a modification to the "Majority" algorithm was introduced by 

incorporating BLOSUM matrices. Secondly, the HCVE2 sequences generated by the 

"Fitness" algorithm (using 1698 sequences from genotypes 1, 2, and 3) was compared 

with those generated by the "Majority" and "Threshold" algorithms using several in sili-

co tools.  

Results: Results indicated that only "Fitness" provided completely defined, gapless 

HCVE2s for all genotypes/subtypes, while considered the evolutionary cost of amino 

acid replacements (main "Majority/Threshold" limitations) by substitution of several 

residues within the generated consensuses. Moreover, "Fitness-generated HCVE2 CSs" 

were superior for antigenic/immunogenic characteristics as an antigen, while their posi-

tions within the phylogenetic trees were still preserved.  

Conclusion: "Fitness" algorithm is capable of generating superior/optimum HCVE2 

CSs for inclusion in a pan-genomic HCV vaccine and can be similarly used in CS gen-

eration for other highly variable antigens from other heterogenic pathogens. 
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Introduction 
 

Hepatitis C virus (HCV) is the primary cause of liv-

er cirrhosis and cancer in humans, affecting an estimat-

ed 57 million individuals worldwide (estimated in 

2020) 1. Despite the absence of an approved vaccine 

for preventing HCV infection or its persistence, the 

introduction of Direct-acting Antiviral Agents (DAAs)  
 

 

 

 

 
in 2012 marked a significant advancement in curing 

HCV infection that led World Health Organization 

(WHO) to set a goal to eliminate HCV by 2030 2,3. 

However, projections indicate that achieving global 

elimination solely through the use of DAAs without an 

effective vaccine may not be feasible 3-5. In fact, the 
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number of new HCV infections has been on the rise, 

more than doubling in the past decade and nearly dou-

bling in the US alone over the last 5 years 6,7. There-

fore, development of a vaccine may be crucial in reach-

ing WHO's target of eliminating HCV infection. 5. 

The single-stranded RNA (+) genome of HCV en-

codes for three structural proteins [core, envelope gly-

coprotein 1 (E1) and E2 and several Nonstructural 

(NS) proteins]. HCV genome has a high mutation/ad-

aptation rate and displays high genetic heterogeneity 

which resulted to seven major genotypes and 67 sub-

types that differ at the nucleotide levels by 25 to 30% 

and 15 to 20%, respectively 8. Infection with HCV in-

duces strong humoral and cellular responses against 

HCV proteins 9. Indeed, induction of efficient neutraliz-

ing Antibodies (nAbs) against HCVE2 is shown by 

both the natural infection and immunization 10. None-

theless, the high sequence divergence among geno-

types and mutation induced-HCV evasion from humor-

al and cellular immune responses are the major obsta-

cles for development of an efficient vaccine against 

HCV infection. In fact, HCVE2 contains the most mu-

tating/adapting segments, so called "HyperVariable 

Regions (HVRs)", in which only 37% of the positions 

share conserved amino acids across all HCV genotypes, 

while they (E2-HVRs) harbor the major epitopes need-

ed for induction of nAbs 11. Hence, the challenge lies in 

inducing cross-genotype (Pan-genotypic) nAbs against 

HCVE2. Notably, a recent study highlighting the fail-

ure of the initial efficacy trial for a prophylactic T-cell 

viral vector-based HCV vaccine emphasized the crucial 

requirement for the induction of "broadly reactive Pan-

genomic neutralizing Antibodies (bPnAbs)" against 

HCVE2 12. Therefore, a strategy capable of generating 

a centralized HCVE2 Antigen (Ag) to induce bPnAbs 

may greatly aid in the development of a vaccine 

against HCV infection.13.  

The calculation of Consensus (average) Sequences 

(CS) by determining the most frequently positioned 

residues/nucleotides within the polypeptides/polymer 

nucleic acids is an important centralized approach in 

bioinformatics 14. The generated CS finds numerous 

applications such as: identification of the functionally 

related structural motifs in DNA and protein sequences 
15,16, design of family-specific degenerate primers 17 

and construction of centralized Antigens (Ags) for vac-

cine formulations targeting highly diverse pathogens 

like Human Immunodeficiency Virus (HIV) 18,19, influ-

enza 20,21 and Hepatitis C Virus (HCV) 22. To address 

these concerns, the generated CS should minimize the 

genetic distances among variable regions of the Ag 

across strains while preserving the same epitope domi-

nance. 

Currently, several bioinformatics tools are available 

that generate a "CS" from "a set of variable input se-

quences". These tools use either "Majority" or 

"Threshold" algorithms 23,24. The "Threshold" selects 

residues with higher frequency than the user’s selected 

threshold; whereas "Majority" selects the most com-

mon residue in each position (regardless of any indi-

cated threshold). Despite the wide application of these 

two algorithms, the generation of an intermediate ca-

nonical sequence to preserve the features of the origi-

nal variable regions is still a challenging issue. Indeed, 

both of these algorithms show several shortcomings 

that limit their performance for the selection of the 

desired CSs. In this context, several limitations might 

be counted for "the threshold-based selection" includ-

ing: i) Limitation of the 60% frequency for most of the 

residues, ii) Neglecting residues with lower frequencies 

than the selected threshold due to the rigidity of this 

algorithm for the specific threshold point, iii) Induction 

of the gap positions that result in the information loss 

within the generated CS. Although the "Majority" algo-

rithm does not have the limitations of the "threshold" 

but it has another major limitation. It does not consider 

the evolutionary cost of substituting a specific residue 

with other candidate residues and only calculates pro-

portions within the sample population. Consequently, 

choosing between two residues with close frequencies 

is just based on their frequency differences that may 

not necessarily reflect the actual frequencies in the 

population. Therefore, availability of an optimized al-

gorithm to address the aforementioned constraints ap-

pears to be essential.  

In the present study, first a modified version of 

"Consensus Generation Algorithm (CGA) " specifical-

ly designed for the highly variable HCVE2 Ag was 

proposed. This algorithm, known as the "Fitness" in-

corporates residue frequencies weighted by fitness 

scores derived from BLOSUM matrices (which is the 

base of the "Threshold and Majority algorithms"). 

These matrices are commonly used to assess the alig-

nment of protein sequences that have undergone evolu-

tionary divergence 25. Additionally, the HCVE2 CS 

generated by the "Fitness" algorithm with those gener-

ated by the "Majority" and "Threshold" algorithms, 

were compared considering various parameters such as 

antigenicity, glycosylation sites, and preservation of 

epitope dominance. 

 

Materials and Methods 
 

Calculation of the fitness score 

The modified algorithm (Fitness) is based on calcu-

lating a fitness score for each residue in a position and 

selecting the most fitted residue for that position. In 

this context, the fitness score is calculated by first con-

sidering each residue as a possible candidate for that 

position and subsequent calculation of the tendency of 

natural selection to keep the residue in that position. 

This tendency is a function of residue’s frequency and 

its substitution score, which is obtained from 

BLOSUMs (Blocks Substitution Matrices). BLOSUM 

matrix is a substitution matrix used for sequence 

alignment of proteins based on Local alignment and 

contains every possible amino acid pair with a quanti-

https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/Protein
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tative measure of their substitution likelihood 25,26. 

Moreover, based on the evolutionary distance of the 

input sequences, the most suitable matrix can be se-

lected (e.g.: Amino acid substitution matrices from 

protein blocks, 30 for too far sequences and BLOSUM 

80 for very close ones). The algorithm multiplies each 

possible substitution pair score, including the substitu-

tion of amino acid with itself and with the frequency of 

the base amino acid. Subsequently, the total fitness 

score is calculated by adding each residue’s corre-

sponding scores, and finally, the residue with the high-

est fitness score will be selected.  

The general process for a candidate position can be 

summarized as follows: i) BLOSUM62 matrix is typi-

cally chosen for convenience but BLOSUM 30, 45, 60, 

and 80 are also viable options,  ii) This specific posi-

tion contains four distinct amino acid residues in dif-

ferent sequences, including ‘G’, ‘W’, ‘T’, and ‘A’, iii) 

The frequency of residues are ‘G’: 0.142, ‘W’: 0.142, 

‘T’: 0.428, and ‘A’:0.285, iv) A table is then created 

using the letter names as both row and column identifi-

ers. This resulted in each cell of the table representing 

a potential combination pair, including self-pairs (Fig-

ure 1A), v) Next, the substitution score of each pair is 

retrieved from the BLOSUM62 matrix and placed in its 

corresponding cells (one cell for self-pairs in the diag-

onal and two cells for other pairs (Figure 1B), vi) The 

frequency of each row’s residue is then multiplied by 

the corresponding substitution scores in that row. For 

example, the 0.14 frequency of G residue is multiplied 

in each cell in that row (Figure 1C), vii) Subsequently, 

the total fitness score is calculated for each residue in 

each column by adding the corresponding cells of that 

column (Figure 1D), viii) Finally, the residue with the 

highest fitness score will be selected as the representa-

tive of that position in the final CS. 

The above procedure was a detailed explanation for 

implementing this algorithm in a programming lan-

guage. However, the fitness score for each residue can 

be calculated by the following formula where F, R, f, 

and r denote fitness score function, target residue, fre-

quency function, and each residue including the target 

itself, respectively.  

𝐹(𝑅) =∑(𝑓(𝑟𝑖)(𝑠(𝑅 → 𝑟𝑖)))

𝑛

𝑖=1

 

 

Equation 1 Calculation of the fitness score for each 

residue. F is: fitness score function, R: target residue, f: 

frequency function, r: each residue including the target 

itself, R -> r: substitution of the ‘R’, or target, residue 

with the ‘r’ residue. 
 

Consensus generation pipeline 

The fitness algorithm relies on the creation of a 

Multiple Sequence Alignment (MSA) as its input. This 

MSA file should be in a familiar format to let the algo-

rithm extract necessary information such as sequence 

length, frequency of each residue in any given position, 

and the list of existing residues in each position. There-

fore, to make a consistent pipeline, the alignment part 

should be added to the base algorithm to make it more 

robust and reliable. 

The MAFFT alignment tool in the python package 
27 is chosen as the basic alignment tool for its versatili-

ty and numerous adjustment options that play a crucial 

role in the Fitness algorithm. An essential feature of the 

MAFFT algorithm is the ability to modify the substitu-

tion matrix, which is used in aligning the given se-

quence set. The substitution matrices in the MAFFT 

algorithm, which can be selected based on the evolu-

tionary distance among the input sequences, include 

BLOSUM 30, BLOSUM 45, BLOSUM 62, BLOSUM 

80, and other scoring matrices. The selected matrix can 

be the same or different from the one that is being used 

in the fitness calculation process (to add extra flexibil-

ity to the final pipeline). 

The consensus generation pipeline is executed using 

the Python programming language, incorporating pre-

processing steps, score calculation steps, and CS ex-

port. All steps in the pipeline are outlined in the 

flowchart shown in figure 2. The python implementa-

tion of the algorithm "bloConGen.ipynb" is provided in 

the supplementary. 
 

Generation of CSs for HCVE2  

In this study, a total of 1698 protein sequences were 

collected from Genotype 1 (comprising 518 and 438 

sequences from 1a and 1b subtypes, respectively), 

Genotype 2 (comprising 122 and 111 sequences from 

2a and 2b subtypes, respectively) and 509 sequences 

from Genotype 3 (3a) of HCVE2 were retrieved from 

the "Virus Pathogen Database and Analysis Resource" 

(ViPR) 28. The high global prevalence of these three 

genotypes was the main reason for their selection. The 

utilized sequence databases are provided as supplemen-

tary data of the manuscript (HCVE2Db.fasta). The 

retrieved sequence clusters were aligned using the 

Figure 1. Calculation of "fitness score" for each amino acid position 

and selection of the most fitted residue. A) The blank (unfilled) 

table. B) Each cell contains the corresponding substitution score of 
its row and column pair. C) Each cell in a row has been multiplied 

by the frequency of its corresponding row name. D) The last column 

contains the total of each column. The maximum fitness score and its 
corresponding column names are highlighted. 
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MAFFT algorithm 29  and employed for the consensus 

generation process using the "Fitness" in comparison 

with the other two consensus generating algorithms 

(Threshold and Majority). Thus, each of the “Fitness 

and Majority algorithms” were used to generate seven 

CSs (i.e.: totally fourteen sequences) including five for 

subtypes (1a, 1b, 2a, 2b and 3a) and two for inter-

subtypes of (1a-1b) and (2a-2b). Additionally, "thresh-

old algorithms of: 50%, 70%, and 90%" were em-

ployed to create three distinct consensuses for each of 

the above mentioned seven groups (i.e.: totally twenty 

one sequences based on threshold algorithms). There-

fore, finally thirty five CSs based on all three algo-

rithms (Fitness, Majority, and Threshold) were gener-

ated and compared (Supplementary Figure 1; Figure 

S1). The CLC genomic workbench 5.5 (QIAGEN CLC 

Main Workbench 5.5, (QIAGEN, Aarhus, Denmark), 

and BioEdit 30 were used to generate CSs.  
 

Antigenicity prediction and evaluation of the hotspot resi-

dues conservation for interaction with nabs  

The antigenicity of the generated CSs from the Fit-

ness algorithm, as well as the threshold and majority 

algorithms, was assessed by comparing them using the 

"AntigenPro server." Each CS from each algorithm 

was scored and the Fitness based consensus score was 

subtracted from it 31. In order to determine the conser-

vation of the Hotspot residues necessary for Ag-nAb 

interactions in the generated CSs of HCVE2, three 

well-defined monoclonal anti-envelope bnAbs for 

HCV neutralization, known as (AP33) 32,33, (1:7) and 

HC-84.1 34 were considered. The conservation of the 

Hotspot residues within the interacting epitopes was 

evaluated by comparing the corresponding amino acids 

of the reference HCVE2 prototype sequences, primari-

ly identified for interaction of these bnAbs 32-34 and 

those of the generated CSs of HCVE2 (Supplementary 

figure 1, Figure S1). 
 

Evaluation of the N-glycosylation sites conservation 

The NetNGlyc Server 1.0 35 was utilized to predict 

the preservation of N-glycosylation sites in the Fitness 

and Majority based generated CSs. The server's thresh-

old of 0.5 was applied to select sites with greater po-

tency for glycosylation. Subsequently, the number of 

these sites in the Majority based CSs was subtracted 

from the Fitness based CSs. 
 

Phylogenetic tree analysis 

To assess the status of the "Fitness-generated" CSs 

compared with that of the "Majority-generated", an 

unrooted Maximum Likelihood-based phylogenetic 

Tree was generated  for each of the 5 intra subtypes 

(1a, 1b, 2a, 2b and 3a) and two inter subtypes (1a-1b 

and 2a-2b) CSs along with reference sequences using 

MEGA11software 36. The bootstrap method with 1000 

replicates was employed for calculation. In addition, to 

confirm the position of the CSs in the trees, HCVE2 

sequences from a database containing 956 HCV E2 

sequences for genotype 1 (a), 233 sequences for geno-

type 2 (b), 509 sequences for genotype 3 (c) along with 

reference genotypes and subtypes sequences were con-

sidered for each tree.   

Figure 2. The consensus generation pipeline for the implementation of the consensus generation. The Flowchart illustrates the preprocessing steps, the 

score calculation steps, and the generated final CS. The python implementation of the Fitness algorithm “bloConGen.ipynb” is provided in the sup-

plementary. 
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The used HCV reference sequences for various gen-

otypes included: (HCV-G1-NP_671491.1, HCV-G2-

YP_001469630.1, HCV-G3-YP_001469631.1) verified 

in NCBI RefSeq database and confirmed HCV subtype 

sequences (HCV-1a-AAA45676.1, HCV-1a-AAA4553 

4.1, HCV-1b-BAA14233.1, HCV-1b-AAA72945.1, 

HCV-2a-BAB32872.1, HCV-2b-BAB08107.1, HCV-

2a-BAA00792.1, HCV-2b-BAA01761.1, HCV-3a-BA 

A06044.1, HCV-3a-BAA04609.1) verified by Interna-

tional Committee on Taxonomy of Viruses (ICTV) 37. 

 

Results 
The "Fitness algorithm" generated complete and discrete 

CSs with evolutionary cost-matched substituted residues  

Fitness, Majority, and Threshold (with 50%, 70%, 

and 90% cut-off) algorithms were employed to gener-

ate HCVE2 CSs for intra-subtypes of 1a, 1b, 2a, 2b and 

3a and inter-subtypes (1a-1b) and (2a-2b) (Supplemen-

tary figure 1, Figure S1). As shown in table 1, "Fitness" 

algorithm generated complete CSs for all genotypes/ 

subtypes (i.e.: absence of unidentified/undetermined 

residues). However, several undetermined/unidentified 

amino acids were positioned in the "Threshold-

generated CSs" (lowest and highest for the 50 and 90% 

thresholds, respectively) that made them inapplicable 

for further analyses. Therefore, further in silico studies 

(for antigenic/immunogenic/ glycosylation characteri-

zations) were considered only for HCVE2 CSs gener-

ated by "Fitness and Majority" algorithms. But the 

"Majority" algorithm also generated almost complete 

CSs for all genotypes with the exception of 1a and 2a 

subtypes with two and one undetermined/unidentified 

residues, respectively (Table 1). However, it should be 

noted that despite generation of almost complete CSs 

by the "Majority" algorithm (i.e.: absence of unidenti-

fied/undetermined residues), there are several residual 

substitutions for the outputs of this algorithm compared 

to that of the "Fitness" (Table 2 "substituted Residues" 

column and Figure S1). The residual substitutions be- 

 

tween generated CSs of the two algorithms (Fitness 

and majority) is more profound in the case of inter-

subtype CS "1a-1b" and less for that of the subtypes 1a 

and 3a. As shown in table 2, there are totally 44 residu-

al substitutions by the "fitness algorithm" (in place of 

those selected by the "Majority algorithm" for the sev-

en generated CSs. The substitutions correspond to 3, 7, 

7, 4, 3, 13 and 7 residues for consensuses generated 

against 1a, 1b, 2a, 2b, 3a, 1a-1b and 2a-2b subtypes, 

respectively. Of note, substitutions appear in case of 

eleven residues with various frequencies including: S, 

L and A in 12, 9 and 7 substitutions respectively and 

Q, R and F, V pairs with 3 and 2 substitutions respec-

tively while Y, G, N, T and P residues appear in just 

one substitution (Table 2, Figure S1). 
 

The "Fitness"-generated HCVE2 CSs showed high anti-

genicity scores and preserved the critical residues for nAb 

interactions  

The HCVE2 CSs generated by the "Fitness" and 

"Majority" algorithms were assessed for their antigen-

icity potential using the AntigenPro server 31. Compar-

ing the "Fitness and Majority" algorithms indicated 

that antigenicity scores above the server threshold level 

(0.5) were obtained for CSs generated by both algo-

rithms (Table S1) but still higher values were observed 

for that of the "fitness" (Table 2 "Antigenicity column" 

and Table S1). Moreover, present results indicated that 

similar to the "Majority", critical/hotspot residues in 

both linear and conformational epitopes that are needed 

for induction/interaction of well-known nAbs: AP33 

(L413, N415, G418, W420), HC84.1 (L441, F442) and 

1:7 (G523, T526, Y527, W529, G530, D535) (32-34) 

are preserved (i.e.: not substituted) in the HCVE2 CSs 

generated by "Fitness" algorithm (Figure S1, Table 2 

"column of Substituted Residues"). 
 

The "Fitness"-generated CSs preserved all glycosylation 

sites within the HCVE2 

The "Fitness" generated consensus HCVE2 and that  

 

Table 1. Comparison of the number of undetermined residues in the HCVE2 CSs generated by 

"Fitness, Majority and Threshold algorithms" 
 

Subtypes * 

Methods ** 
1a 1b 2a 2b 3a 1a-1b 2a-2b 

Fitness Ω 0 0 0 0 0 0 0 

Majority € 2 0 1 0 0 0 0 

T50 ¥ 17 17 22 19 23 48 31 

T70 ¥ 43 48 93 33 46 75 78 

T90 ¥ 84 79 162 68 85 104 137 
 

* HCVE2 subtypes used to generate CSs 

** The digits indicate the number of undetermined/unidentified residues in the generated HCVE2 CSs by each 

algorithm for the indicated subtypes. Please see "supplementary figure 1 (Figure S1)" for the exact position of 

the undetermined/unidentified residues within the generated CSs.  

Ω "Fitness" algorithm generated complete CSs for all HCVE2 genotypes/subtypes (i.e.: absence of unidentified 

residues) 

€ "Majority" algorithm generated complete CSs for all HCVE2 genotypes with the exception of 1a and 2a 

subtypes with two and one undetermined/unidentified residues, respectively. 

¥ The threshold rigidities are denoted by T50, T70 and T90. Threshold-based generated CSs had more unidenti-

fied residues in higher cut-off values (i.e.: highest for T90 and lowest for T50). 
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of the "Majority" in the NetNGlyc server (35) for the 

presence of glycosylation sites were evaluated. As in-

ferred from table 2, table S1, while "Fitness and Major-

ity algorithms" generated CSs with almost the same 

number of the preserved glycosylation sites, "fitness" 

still showed superior performance in case of 1b sub-

type of HCVE2 (Table 2, Table S1). 
 

The position of the "Fitness"-generated CSs was preserved 

in the phylogenetic tree 

Figure 3 displays unrooted Maximum Likelihood-

based phylogenetic trees for five HCV subtypes (1a, 

1b, 2a, 2b & 3a) and two inter subtypes (1a-1b & 2a-

2b) were rendered through MEGA11software 36 (gen-

erally seven representative trees). The Sequence Identi-

ty Matrix (SIM) calculated by BioEdit software 30, in-

dicated that the distance of Majority and Fitness-

generated CSs were closely similar and comparable to 

the HCVE2 sequence database (Table S2).  The results 

of the phylogenetic analyses for HCVE2 sequence da-

tabase including 956 HCV E2 sequences for G1 (a), 

233 sequences for G2 (b), 509 sequences for G3 (c) 

confirmed the SIM results. These analyses utilized 

HCV reference sequences (obtained from NCBI Ref-

Seq database and confirmed subtypes obtained from 

ICTV 37 along with the fitness/majority generated CSs 

(Figure 3, Figure S2) also confirmed the SIM results 

indicating that the overall position of all CSs produced 

by either "Fitness" or "Majority" is preserved on the 

tree.  

 

Discussion 
 

In the present report, the objective was to generate 

superior CSs of HCVE2 antigens as potential vaccine 

candidates. Initially, the "Fitness" algorithm, which is a 

modification of the "Majority algorithm" based on 

BLOSUM matrices, was introduced. This algorithm 

focuses on fitness scores. Subsequently, the CSs of 

HCVE2 generated by the fitness algorithm were com-

pared to those generated by the threshold (50,70,90) 

and majority algorithms for various parameters includ-

ing the frequency of undetermined/unidentified resi-

dues, antigenicity, preservation of epitope dominance, 

glycosylation sites, and overall position on the phylo-

genetic tree. The selection of five intra subtypes (1a, 

1b, 2a, 2b, and 3a) and two inter subtypes (1a-1b and 

2a-2b) belonging to HCV genotypes one to three was 

based on the high global prevalence of these geno-

types. The findings demonstrated that the CSs generat-

ed by the "Fitness" algorithm overcame the limitations 

of the currently available algorithms for CS generation 

("Threshold" and "Majority") by providing a complete-

ly defined, gapless sequence (without any occurrence 

of undefined residues, which is a common issue in the 

"Threshold" algorithm), while also considering the 

evolutionary cost of amino acid substitution (which is a 

limitation of the "Majority" algorithm). Furthermore, 

the consensus HCVE2 sequences generated by the fit-

ness algorithm exhibited superior antigenicity and 

preservation of glycosylation sites, and their positions 

in the phylogenetic trees were also maintained. Since 

"fitness" algorithm is a modification (improved ver-

sion) of the "Majority" algorithm, it can be similarly 

used to create "consensus sequences for antigens from 

other pathogens as shown for: Influenza H1N1 38, 

H5N1 39, H3N2 40, HCV E2 (NOTC1 and NOTC2) 41 

and HIV-1 42 and similar to the "Majority" the range of 

BLOSUM 30-80 can be applied based on the variabil-

ity of the pathogen of interest as a modification. 

Table 2. Comparison of the various aspects of the HCVE2 Fitness-based CSs and that of the Majority” 
 

Subtypes Substituted Residues 
Subtracted Antigenic-

ity Scores * 

Subtracted Number of 

Glycosylation Sites ** 

1a F399L, M456L, H482Q 0.054699 0 

1b N384G, H386Y, G393A, H397S, F399L, T404S, D466A 0.026685 1 

2a H434N, M456L, V467Q, P471A, Q548L, W653F, V720I 0.089588 0 

2b T400A, T404S, K408Q, T530S 0.027569 0 

3a K465R, N501S, N579S 0.015297 -1 

1a-1b 
F398L, T403S, P406A, D465A, T472S, K502S, F539L, 

I157V, Q548L, T565V, G568A, H582T, T597S 
0.060933 0 

2a-2b M404P, G558S, Y576F, T580L, T644S, N656R, K714R 0.071288 0 
 

Ω Substituted residues in the generated CSs by "Fitness (preceding residue)" compared to that of the “Majority (following residue)” algorithm in the specified 

positions (the indicated digit between two residues) denote the consideration of the evolutionary cost by the “Fitness” algorithm (Figure S1). Fitness residual 

substitutions for eleven different selected residues of majority algorithm including: S, L and A in 12, 9 and 7 substitutions respectively (shown by underlined, 

underlined/bold and bold, respectively) and Q, R and F, V pairs with 3 and 2 substitutions respectively and Y, G, N, T and P with just one substitution are provided. 

*Digits indicate the differences (subtractions) of the antigenic scores for “Fitness” generated CSs and that of the “Majority” showing the higher values for the 

preceding one (Table S1).  

** Digits indicate the differences (subtractions) of the number of the glycosylation sites for the “Fitness” generated CSs and that of the “Majority” showing almost 

similar values for both (Table S1). 
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Based on the data presented in table 1 (sequence 

comparison column) and figure S1, it is evident that 

only the "Fitness algorithm " was able to produce well-

defined, gapless consensus HCVE2 sequences. In con-

trast, the "Threshold-generated HCVE2 CSs" contained 

numerous undefined residues, particularly at higher 

cut-off values (e.g. T90 had the highest amount of un-

defined residues, while T50 had the lowest). The "Ma-

jority" algorithm also resulted in undetermined or uni-

dentified residues in the consensus sequences of HCV 

1a and 2a subtypes. Previous studies have utilized the 

Majority algorithm for generating CS antigens of HIV 

Env 18,19,43 and Influenza hemagglutinin 21,38-40,44 pro-

teins. Additionally, the "Threshold algorithm" in 

UGENE software 23 has been used for generating CS 

antigens for Dengue virus 45 and SARS-CoV2 46 enve-

lope proteins. However, the present study found that 

the "Threshold algorithm" was unsuccessful in generat-

ing complete CSs for highly divergent E2 proteins 

across HCV genotypes or subtypes, in contrast to the 

"Fitness algorithm". The obvious explanation for this 

result lies in the higher heterogeneity of the HCVE2 in 

comparison to the HIV Env, Influenza hemagglutinin 

proteins and antigens of Dengue and SARS-CoV2 vi-

ruses. In fact, the HCV HVR1 exhibit only one amino 

acid with 100% conservancy among all six HCV geno-

types 11  as evidenced by the 1698 HCVE2 sequences 

retrieved  from the present database (supplementary 

file: HCV-Db.fasta). Notably, there is over 80% varia-

bility at a single position within the 437 sequences of 

HCVE2-subtype 1b (calculated data is not shown). 

Consequently, the significant variability in HCVE2 

poses a formidable challenge for the "Majority and 

Threshold algorithms," particularly when attempting to 

generate a CS from multiple HCV genotypes. In this 

context, a recent report has described the use of the 

"Majority algorithm" to create CSs from genotype 1 

(1a-1b) HCVE2 (referred to as NOTC1 and NOTC2 

CSs) 41. However, apparently, to be able to use the 

"Majority" for generation of NOTC1 and NOTC2CSs, 

the HVR1 regions from highly variable HCVE2 (1a-

1b) sequences were removed. This decision was made 

despite the fact that HCVE2-HVRs harbor the major 

epitopes necessary for induction of neutralizing anti-

bodies (nAbs) 47,48. Moreover, In spite of the fact that 

most of the Majority-generated HCVE2 CSs do not 

have unidentified or undetermined residues, there are 

totally 44 residual substitutions for the outputs of this 

algorithm compared to the "Fitness". These substitu-

tions can be observed in table 2 "Substituted Residues" 

column and figure S1. Out of the seven generated con-

sensuses, the Majority algorithm has selected eleven 

different residues. Among these, residues S, L, and A 

have 12, 9, and 7 substitutions respectively. Addition-

ally, the pairs Q, R, and F, V have 3 and 2 substitutions 

respectively, while Y, G, N, T, and P have only one 

Figure 3. Phylogenetic tree analyses. Three unrooted Maximum Likelihood-based phylogenetic trees for HCV CSs generated by Fitness and Ma-

jority algorithms from every five subtypes (1a, 1b, 2a, 2b & 3a) and two inter subtypes (1a-1b & 2a-2b) were rendered through MEGA11software 

and calculated by the bootstrap method using 1000 replicates [34] using HCV reference sequences for each genotype and confirmed subtypes: a: 1a, 

b: 1b, c: 2a, d: 2b, e: 3a, f: 1a-1b, g: 2a-2b (■: Majority, ●: Fitness). 
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substitution each. These substitutions occur because 

the Fitness algorithm takes into account the "Evolu-

tionary Cost" based on the obtained score. Indeed, 

"Fitness algorithm" weights amino acid frequencies by 

substitution costs from BLOSUM matrix which in 

these cases overwrites amino acid selection by Majori-

ty algorithm. For example, the Majority algorithm se-

lected residues S and L in 12 and 9 different positions 

within the generated HCVE2 CSs, but the Fitness algo-

rithm assigned them a lower score for selection, result-

ing in their replacement with other amino acids (Table 

2 "Substituted Residues" column and Figure S1). 

Hence, the "Fitness algorithm" could potentially over-

come the limitations of the "Majority and Threshold 

algorithms" in generating of the reliable CSs against 

highly variable Ags likeHCVE2. 

As shown in figure S1, results indicated that the 

critical/hotspot residues in both linear and conforma-

tional epitopes were perfectly preserved in the "Fit-

ness-generated HCVE2 CSs" as well as in those gener-

ated by the majority algorithm (Table 2 "Antigenicity 

column"). Presence of these critical/hotspot residues is 

essential for interaction of prominent nAbs such as: 

AP33 (L413, N415, G418, W420), HC84.1 (L441, 

F442) and 1:7 (G523, T526, Y527, W529, G530, 

D535) 32-34. Preserving the specific epitopes through 

the conservation of their contributing critical/hotspot 

residues is an important and indispensable feature of an 

algorithm for the generation of consensus Ags. There-

fore, the "Fitness" might be considered as a reliable 

algorithm for the generation of a consensus vaccine Ag 

against highly variable pathogens and HCV types/sub-

types. In agreement with our results, prior studies on 

Influenza Hemagglutinin (H1N1) consensus protein 38 

indicated the capability of "Majority" algorithm in the 

generation of CSs with preserved critical/hotspot resi-

dues for variable antigens. Accordingly, the two 

HCVE2 consensus proteins (NOTC1 and NOTC2), 

generated by the "Majority algorithm" from 1a and 1b 

subtypes of genotype 1 41 also retained their binding 

capabilities to well-known HCV nAbs including: AP33 
32,33 and 1:7 34. However, it should be noted that still 

the Fitness-generated HCVE2 CSs showed higher anti-

genic scores compared to that of the majority algorithm 

(Table S1) indicating its superiority in this context. 

Besides critical residues that interact with nAbs, 

natural glycosylation of the HCVE2 glycoprotein 

might play important structural roles for the protein as 

an Ag 49. As shown in table 2 (Number of Glycosyla-

tion sites column) and table S1, while "Fitness, Majori-

ty and T50 algorithms" generated CSs with almost the 

same number of the preserved glycosylation sites, but 

still "fitness" showed superior performance for 1b sub-

type of HCVE2. Consistent with the present study re-

sults, a prior study on Influenza H3N2 consensus pro-

tein also showed that all glycosylation sites in the "Ma-

jority-generated consensus" proteins were preserved in 

the same manner as natural strains 40. But in contrast, 

for the HIV-env protein, the generated CSs by both the 

"Threshold" and Majority algorithms led to an in-

creased number of glycosylation sites compared to that 

of the natural protein. In vivo immunization studies 

using the Majority-generated consensus HIV-env pro-

teins indicated that increased number of glycosylation 

sites resulted in the shielding of the non-neutralizing or 

poorly conserved epitopes and thus improved the expo-

sure of the conserved, neutralizing epitopes to the im-

mune system 50. However, on the contrary, it is shown 

that preservation of two amino acids involved in glyco-

sylation of an Influenza H1N1-generated CS resulted 

to the masking of important epitopes involved in Ag-

Ab interactions 38. Taken together, prediction of the 

immunization effect of the glycosylation site preserva-

tion (i.e.: augmentation, or decline of the immunogen-

icity) in the generated consensus Ags needs further in 

vivo investigations.  

The phylogenetic tree analyses indicated that the 

distance between the "Majority and Fitness-generated 

CSs" were closely similar and comparable to that of the 

HCVE2 sequence database (Table S3) and thus the 

position of the "Fitness"-generated CSs were preserved 

(Figure 3, Figure S2). These results suggest that despite 

the "Fitness" algorithm introducing several residual 

substitutions compared to the "Majority" algorithm 

(that resulted to the enhancement of antigenic/immu-

nogenic characteristic and consideration of the evolu-

tionary characteristics of HCVE2 as an Ag), but still its 

position on the phylogenetic tree is conserved. This 

observation highlights the valuable contribution of the 

"Fitness" algorithm in generating CSs against highly 

variable and heterogeneous proteins. Consistent with 

the present study results, prior studies on the generated 

CSs by "Majority" for Influenza H1N1 38, H5N1 39, 

H3N2 40, HCV E2 (NOTC1 and NOTC2) 41 and HIV-1 
42 also indicated the preservation of their positions on 

the phylogenetic tree. 

Recently, by comparing various in silico methods to 

identify T-cell based CD4+/CD8+ epitopic peptides in 

HCVE2 of various genotypes, two evolutionary con-

served peptides notified as P2 (VYCFTPSPVVVG) 

and P3 (YRLWHYPCTV) were identified 51. The pre-

sent study, which focused on generating the complete 

HCVE2 CSs to induce nAbs, cannot be directly com-

pared to this report. However, it is worth noting that 

both the P2 and P3 T-cell based CD4+/CD8+ peptides 

mentioned in the report are also present in our "Fitness-

generated CSs". This observation further confirms the 

capability of the "Fitness algorithm" to preserve the 

conserved residues within the whole generated HCVE2 

CSs that are involved in the induction of the cellular 

immunity, too.  

More recently, another immunoinformatics method 

was also applied to design a multi-epitope vaccine 

against HCV. To this end, several B- and T-cell 

epitopes from conserved regions of the E2 protein of 

seven HCV genotypes were joined together with chol-
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era enterotoxin subunit B (CtxB). In silico analyses and 

structural predictions indicated binding stability with 

Toll-like receptor 2 (TLR2) and TLR4 52. However, it 

is important to note that this study also focused on se-

lecting and combining conserved epitopes, which dif-

fers from our approach of generating the complete 

HCVE2 protein CSs to induce nAbs. Similarly, in an-

other recent report, various immuno-informatics tools 

and bioinformatics databases were deployed to identify 

potential consensus B-cell and T-cell epitopes from 

spike glycoprotein of "Severe Acute Respiratory Syn-

drome Coronavirus 2 (SARS-COV-2)", the virus re-

sponsible for the latest global pandemic. However, 

consistent with the prior study, only separate epitopes 

and not the whole spike glycoprotein were taken into 

account for consensus generation, rather than the entire 

spike glycoprotein 53. It should be also noted that Posi-

tion Specific Scoring Matrix (PSSM) and similar ma-

trixes which are dependent on the residual position (in 

contrast to, BLOSUM  that is position-independent) are 

mostly used for "BLAST and motif searches and pre-

diction" applications in the form of the "relative con-

sensuses with probable percentages of the occurrence 

of a residue in a specific position (which is derived 

from a multiple sequence alignment)" rather than crea-

tion of the exact consensus for a whole protein which is 

going to be expressed and used as an antigen 54,55. 

Therefore, to our best of knowledge, to date, only 

BLOSUM-based algorithms (such as threshold and 

majority) have been used in studies related to consen-

sus generation of antigenic proteins for various patho-

gens 18,19,21,23,32-34,38-41,43,46.  

Finally, it is worth mentioning that when capturing 

the most common sequences in Ag databases, there is a 

potential sampling bias in the generated CS towards the 

antigenic cluster that has been frequently isolated and 

reported 38,39. To avoid this sampling bias, a layered 

consensus building approach has been adopted for the 

generation of HCVE2 protein CS in genotype 1. How-

ever, the HVR1 region has been excluded due to limi-

tations in the algorithm. Thus, combination of the lay-

ering approach and the Fitness algorithm along with 

the inclusion of other HCV genotypes can expand the 

breadth of the CS induced immunity. 

 

Conclusion 
 

In summary, a modification based on BLOSUM 

matrices (Fitness-score oriented) to the "Majority algo-

rithm" which overcame the limitations of threshold and 

majority algorithms in generating CSs from highly 

variable proteins like HCVE2 was successfully imple-

mented. The Fitness-generated HCVE2 sequences ex-

hibited superior antigenic, immunogenic, and evolu-

tionary characteristics compared to those generated by 

the Threshold/Majority algorithms, while still main-

taining their positions in phylogenetic trees. These 

promising results from authors in silico study suggest 

that the consensus HCVE2 Ag sequences generated by 

the "Fitness" algorithm could serve as potential vaccine 

candidates for producing cross-protective neutralizing 

antibodies, warranting further investigation in future in 

vitro and animal studies. These generated consensuses 

could be utilized in vaccine development, similar to 

multivalent vaccines using various platforms. Addi-

tionally, the "Fitness" algorithm could be applied to 

optimize CSs for other highly variable antigens from 

diverse pathogens. 

 

Supplemented Materials 
 

The python implementation of the "Fitness" algo-

rithm is provided in the supplementary (bloConGen. 

ipynb). For the execution of the "jupyter notebook 

file", the "Biopython Pandas and Mafft Commandline" 

packages should be installed in the python environ-

ment. The database of aligned sequences used to gen-

erate Threshold, Majority and Fitness CSs is also pro-

vided in the supplementary (HCVE2Db.fasta). The 

supplementary figures (Figures S1, S2) and tables (Ta-

ble S1, S2) are also provided as a file in the supple-

mented materials (Supplementary Figures and Tables). 

The unrooted Maximum Likelihood-based phyloge-

netic Trees for three HCV genotypes including HCVE2 

sequence database of 956 HCV E2 sequences from 

genotype 1 (G1), 233 sequences from genotype 2 (G2) 

and 509 sequences from genotype 3 (G3) along with 

confirmed genotypes and subtypes and CSs were pro-

vided as Figure S2. 
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