# Antimicrobial Susceptibility Pattern and Serotype Distribution of Streptococcus Pneumoniae in the Middle East Region: A Systematic Review and Meta-Analysis

Samira Karimaei<sup>1</sup>, Hamid Reza Tohidinik<sup>2</sup>, Davoud Afshar<sup>3,4</sup>, Mohammad Reza Pourmand<sup>1</sup>, Soheila Habibi Ghahfarokhi<sup>1</sup>, Narjes Noori Goodarzi<sup>1</sup>, Mohammad Azarsa<sup>5</sup>

<sup>1</sup> Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

<sup>2</sup> HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

<sup>3</sup> Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran

<sup>4</sup> Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran

<sup>5</sup> Department of Microbiology, School of Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran

Received: 16 Jul. 2020; Accepted: 18 Dec. 2020

Abstract- This study aimed to explore the prevalence, antimicrobial resistance levels, and serotype distribution of S. pneumoniae in the Middle East region. We conducted a systematic literature review by searching several databases including PubMed, ISI Web of Science, Scopus, Google scholar through 2000 to 2017 by using the following keywords: "Streptococcus pneumoniae", "pneumococcus", "serotype", "Antibiotic resistance," and "Middle East "in combination with "OR" and "AND" Boolean Operators within Title/Abstract/Keywords fields. We used a random-effects model to calculate the pooled prevalence and 95% confidence intervals (CIs) for binomial variables. All statistical analyses were done using STATA 12.0 (STATA Corp, College Station, TX). We found 73 articles appropriate, on the word of inclusion and exclusion criteria, for inclusion in this systematic review and meta-analysis. The result revealed that the pooled prevalence of S. pneumoniae carriage was 35% (95% CI: 26-44%). The most frequent pneumococcal serotypes werel9, 19F, 6, 23 and 6A/B which were found in 19%, 12%, 11%, 10% and 10% of isolates respectively. Pneumococcal resistance reported for azithromycin, cefaclor, clarithromycin, chloramphenicol, erythromycin, and tetracycline were 24%, 37%, 23%, 11%, 26%, and 29% respectively, while vancomycin resistance was not reported. The highest resistant prevalence was reported against co-trimoxazole (Trimethoprim/sulfamethoxazole). For this antibiotic, a pooled resistance prevalence of 43% was identified. The present review demonstrates that the prevalence of S. pneumoniae carriage was high in the Middle East region. Surveillance must be continued in this region to evaluate. The resistance pattern and serotype distribution.

 $\ensuremath{\mathbb O}$  2021 Tehran University of Medical Sciences. All rights reserved.

Acta Med Iran 2021;59(2):64-78.

Keywords: Streptococcus pneumoniae; Antimicrobial susceptibility; Serotype; Middle east

## **Introduction**

*Streptococcus pneumoniae* is a common cause of community-acquired infections such as pneumonia, meningitis, otitis media, and sepsis (1,2). The organism is commensal in the upper respiratory tract but can cause infections in some conditions (2).

Based on the reports, despite the accessibility of efficient vaccines and antibiotics, pneumococcal diseases were annually responsible for nearly one to two million deaths worldwide (3). The increase of antibiotic-resistant microorganisms is a main concern to the public, and similar to other pathogens, resistance to several antimicrobial agents such as macrolides, penicillins, and

Corresponding Author: D. Afshar

Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran Tel: +98 2433140297, Fax: +98 2433140297, E-mail address: Afshar.d@zums.ac.ir

Copyright © 2021 Tehran University of Medical Sciences. Published by Tehran University of Medical Sciences This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (https://creativecommons.org/licenses/bync/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited cephalosporins have been expanded among pneumococci (1). This causes the treatment of pneumococcal disease to have a challenging consequence (1). Moreover, diverse pneumococcal serotypes display various antibiotic sensitivity (4). Based on the immunochemistry of the antigenic capsular polysaccharide, pneumococci are classified into more than 100 serotypes; of them, 15 serotypes are known to reason almost 90% of the invasive diseases around the world. This serotypes including 14, 6, 1, 19, 3, 4, 5, 9, 18, 23, 12, 7, 2, 25, and 8 serotypes (2,5). The polysaccharide capsule causes resistance to phagocytosis in the lack of type-specific antibody and has a major role in the pneumococcus invasion into the systemic blood system. Several serotype-specific pneumococcal polysaccharide and conjugate vaccines have been premeditated, which synthesize the capsular polysaccharides of the more common invasive serotypes (2,6). Because the distributions of the invasive serotypes vary geographically, knowledge of the regional pneumococcal serotype distribution is essential for a suitable vaccine program.

Therefore, comprehensive information about the epidemiology of pneumococcal resistance and serotype distribution is essential to monitor changing trends and attempt interventions to cease these trends. The prevalent serotype distribution and drug resistance patterns of *S. pneumoniae* had been investigated in the Middle East region with various studies, but similar data about the situation in this region have been sparse. Also, few studies have often been unrelated, using dissimilar methodologies and specimens; as a result, they are hard to compare. Therefore, this study focuses on the work undertaken in the Middle East region to evaluate the epidemiology of resistance and serotype distribution in *S. pneumoniae* isolates in this region.

## **Materials and Methods**

## Search strategy

A systematic review of the published literature was performed from 2000 to 2017. The following databases for relevant articles were searched without language limitations: Medline via PubMed, Scopus, Web of Science, and Google Scholar. The following keywords were used: "Streptococcus pneumoniae", "pneumococcus", "Serotype", "Antibiotic resistance" and "Middle East "within titles and abstracts in combination with "OR" and "AND" Boolean Operators in the Title/Abstract/Keywords fields. The data included in this review relate to the following 16 countries: Syria, Israel, Iran, Turkey, Saudi Arabia, Egypt, United Arab Emirates, Iraq, Qatar, Lebanon, State of Palestine, Jordan, Yemen, Oman, Bahrain, and Kuwait. One of our research team members evaluated the search results randomly and confirmed no related article was ignored. One of the team researchers (SK) screened the articles for the appropriateness of titles and abstracts. Any disagreements with article selection were resolved after discussion with the corresponding author (DA).

#### Inclusion and exclusion criteria

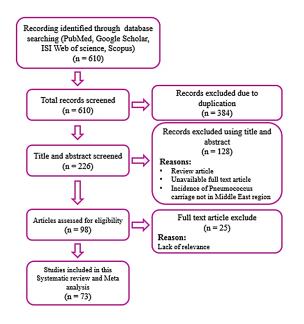
Studies with the following criteria were included in the study: 1) studies that investigate the prevalence of pneumococcal carriage from different areas of the Middle East region. 2) Studies published after 2000 were included. 3) Studies with sufficient information were provided in the context of serotypes distribution of antibiotic resistance patterns. Articles were excluded from the studies if Review articles, systematic reviews, case reports, and studies that did not have the minimum qualifications to be included in the meta-analysis. Finally, duplicate publications were excluded.

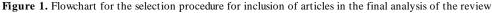
#### Quality assessment of studies

The quality of the relevant articles was assessed using a checklist for Prevalence Studies with the following items: sampling, sample size, setting, and valid methods, which was given by the Joanna Briggs Institute (7).

## **Data extraction**

For all studies, the following details were extracted from the manuscripts: the first author's last name, publication date, the study setting, number of participants, study period, sample size, the source of isolates, research location, identification methods, antibiotic susceptibility testing method, serotyping methods, serotypes prevalence and proportion of antibiotic resistance. Three authors independently extracted data from included studies.


#### Statistical analysis


We calculated the prevalence estimates for each study and the corresponding pooled estimate using the Metaprop (8), a STATA-based command developed for binominal data. The 95% confidence intervals (CIs) were computed using the exact binomial method incorporating the Freeman-Tukey double arcsine transformation of proportions. Heterogeneity among studies was assessed by the DerSimonian & Laird Q test and I2 statistic which is the proportion of total variation due to between-studies heterogeneity.

## Results

## Literature search and study selection

A total of 610 articles were retrieved for consideration from database searches; the flowchart in Figure 1 shows the selection procedure for the involved studies. Of these, 384 papers were excluded due to duplication, and 226 articles were retained for the title and abstract assessment. Then, by reviewing the titles and abstracts, 128 articles were excluded. Finally, 73 articles had our inclusion criteria, which included a total of 14602 isolates (2,3,9-78). The list of articles included in this review is presented in Table 1.





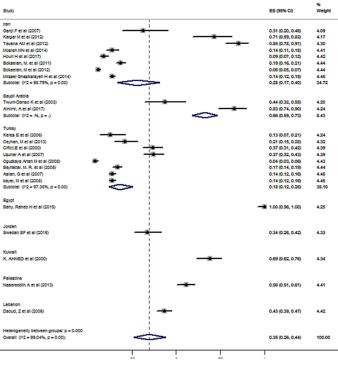



Figure 2. Prevalence of S. pneumoniae carriage in the Middle East region

| Table1. The characteristic of the included studies |                  |              |                                                                             |  |
|----------------------------------------------------|------------------|--------------|-----------------------------------------------------------------------------|--|
| First author                                       | Publication year | Country      | Serotypes isolated                                                          |  |
| Al-Sheikh(2)                                       | 2014             | Saudi Arabia | 23F, 6B, 19F, 18C, 4, 14, 19A                                               |  |
| Ahmadi (9)                                         | 2013             | Iran         | -                                                                           |  |
| Ahmed (10)                                         | 2000             | Kuwait       | 6B, 14, 19F, 23F                                                            |  |
| Alıskan (11)                                       | 2016             | Turkey       | -                                                                           |  |
| Al-mazrou (12)                                     | 2005             | Saudi Arabia | 6, 19, 1, 15, 14, 23, 7, 18                                                 |  |
| Alnimr (13)                                        | 2017             | Saudi Arabia | 11A, 19A, 17F, 23F, 19F, 3, 14, 33, 6A, 8                                   |  |
| Al- swailem (14)                                   | 2004             | Saudi Arabia | 19A, 6B,23F, 9V, 14,19F, 18C                                                |  |
| Al-tawfigh (15)                                    | 2004             | Saudi Arabia | -                                                                           |  |
| Al-tawfigh (16)                                    | 2006             | Saudi Arabia | -                                                                           |  |
| Altınkanat (17)                                    | 2013             | Turkey       | 19F, 23F, 6, 9V, 17F, 25F, 14, 18, 20, 22F, 23A, 3<br>34, 4, 7B, 7C, 7F, 7A |  |
| Altun (18)                                         | 2006             | Turkey       | 19, 14, 23, 9, 1, 6, 15                                                     |  |
| Altun (19)                                         | 2015             | Turkey       | 3, 4, 6, 8, 9, 23,5, 6B, 7A, 9V, 20, 23F                                    |  |
| Ashtiani (20)                                      | 2014             | Iran         | -                                                                           |  |
| Aslan (21)                                         | 2007             | Turkey       | 6, 19, 1, 23, 20, 17                                                        |  |
| Aslan (22)                                         | 2012             | Turkey       | -                                                                           |  |
| Ataee (23)                                         | 2014             | Iran         | -                                                                           |  |
| Bahy (24)                                          | 2016             | Egypt        | 6A/B, 23F, 5, 19F                                                           |  |
| Bayer (25)                                         | 2008             | Turkey       | -                                                                           |  |
| Bayraktar (26)                                     | 2005             | Turkey       | 9, 19, 23, 10, 6 , 18                                                       |  |
| Bokaeian (27)                                      | 2011             | Iran         | 1, 19A, 15C, 9V, 11A , 19F                                                  |  |
| Bokaeian (28)                                      | 2012             | Iran         | 23F, 6B, 3, 19F, 14                                                         |  |
| Ceyhan (29)                                        | 2013             | Turkey       | 6B, 9V, 14, 19F, 23F                                                        |  |
| Ciftci (30)                                        | 2000             | Turkey       | -                                                                           |  |
| Dabboussi (31)                                     | 2013             | Lebanon      | -                                                                           |  |
| Daoud (32)                                         | 2006             | Lebanon      | -                                                                           |  |
| Daoud (33)                                         | 2011             | Lebanon      | -                                                                           |  |
| Dashti (34)                                        | 2012             | Iran         | 19, 6, 14, 17, 20, 23, 21                                                   |  |
| Elshafie (35)                                      | 2016             | Qatar        | 3, 14, 1, 19a, 9v, 23F                                                      |  |
| Eltahawy (36)                                      | 2001             | Saudi Arabia | -                                                                           |  |
| Esel (37)                                          | 2001             | Turkey       | 19, 23, 1, 3,6, 8, 14, 5, 18                                                |  |
| Fouda (38)                                         | 2004             | Saudi Arabia | 9, 18, 23, 6, 19                                                            |  |
| Gunullu (39)                                       | 2000             | Turkey       | -                                                                           |  |
| Gonullu (40)                                       | 2009             | Turkey       | -                                                                           |  |
| Gildemir (41)                                      | 2016             | Turkey       | 19F, 8, 1, 1 6A, 14, 23F, 5, 3,23A/B                                        |  |
| Gur (42)                                           | 2001             | Turkey       | -                                                                           |  |
| Gur (43)                                           | 2007             | Turkey       | -                                                                           |  |
| Habibian (3)                                       | 2013             | Iran         | 1, 2, 4, 6, 7, 19, 20, 8                                                    |  |
| Hanna-Wakim (44)                                   | 2012             | Lebanon      | 19F, 6, 14, 9V/9A, 1, 3, 19A                                                |  |
| Houri (45)                                         | 2017             | Iran         | 23F, 19F, 19A, 9V, 11A, 14                                                  |  |
| Ilki et el (46)                                    | 2010             | Turkey       | -                                                                           |  |
| Imani (47)<br>Kanam Carlia (48)                    | 2007             | Iran         | -                                                                           |  |
| Karam Sarkis (48)                                  | 2006             | Lebanon      | -                                                                           |  |
| Kargar (49)                                        | 2012             | Iran         | -                                                                           |  |
| Keles (50)                                         | 2006             | Turkey       | -                                                                           |  |
| Kohanteb (51)                                      | 2007             | Iran         |                                                                             |  |
| Krishnappa (52)                                    | 2014             | Saudi Arabia | 23F, 19F, 14, 6B, 5, 6A, 19A, 9V                                            |  |
| Memish (53)                                        | 2004             | Saudi Arabia | 19F, 9V, 4, 11, 6A, 3, 19A                                                  |  |
| Mirzaei (54)                                       | 2014             | Iran         | 19F,6A, 15A, 11, 23F, 1, 19A, 35B                                           |  |
| Mokaddas (55)                                      | 2007             | Kuwait       |                                                                             |  |
| Mokaddas (56)                                      | 2008             | Kuwait       | 23F, 19F, 6A, 6B, 14, 19A.                                                  |  |
| Mokaddas (57)                                      | 2001             | Kuwait       | -                                                                           |  |
| Mosleh (58)                                        | 2014             | Iran         | -                                                                           |  |
| Nasereddin (59)                                    | 2013             | Palestine    | 6A, 19F, 23F, 6B, 14, 19A,15B,34, 11A                                       |  |
| Oguzkaya (60)                                      | 2008             | Turkey       | -                                                                           |  |
| Oskoui (61)                                        | 2003             | Iran         | -                                                                           |  |
| Ozakin, (62)                                       | 2012             | Turkey       | -                                                                           |  |
| Ozalp (63)                                         | 2004             | Turkey       | 19, 23, 6, 9 ,15                                                            |  |
| Sener (64)                                         | 2007             | Turkey       | -                                                                           |  |
|                                                    |                  | United Arab  |                                                                             |  |

 Table1. The characteristic of the included studies

|                  |      | Cont table 1. |                                |
|------------------|------|---------------|--------------------------------|
| Shibl (66)       | 2005 | Saudi Arabia  | -                              |
| Shibl (67)       | 2000 | Saudi Arabia  | -                              |
| Swedan (68)      | 2016 | Jordan        | 19F, 6A/B, 11A, 19A, 14 ,15B/C |
| Taha (69)        | 2012 | Lebanon       | 19F, 23, 2, 14, 19A, 12F       |
| Tavana (70)      | 2012 | Iran          | 6,19                           |
| Telli (71)       | 2011 | Turkey        | 19.23,6,14,15                  |
| Twum-Danso (72)  | 2003 | Saudi Arabia  | 6,19,1,15,14,23                |
| Uncu (73)        | 2007 | Turkey        | -                              |
| Uwaydah (74)     | 2006 | Lebanon       | -                              |
| Uzuner (75)      | 2007 | Turkey        | -                              |
| Yalcin (76)      | 2006 | Turkey        | 19F, 6B,23F,23,1               |
| Yenisehirli (77) | 2003 | Turkey        | 19,23,9,14,6                   |
| Yurdakul (78)    | 2001 | Turkey        | -                              |

#### Identification and validation of S. pneumoniae isolates

Overall, among 73 studies included in this metaanalysis, 33 studies reported the serotypes of *S. pneumoniae*; among them, 26 studies performed quellung reaction as the serotyping method, and ten studies used the molecular typing method (Multiplex PCR) for pneumococcus serotyping. Moreover, three studies used both Multiplex PCR and quellung reaction for the serotyping purpose (2,13,44).

#### Serotype distribution of S. pneumoniae isolates

Thirty-three studies reported the serotypes of *S. pneumoniae*. A total of 5349 isolates recovered from various samples. The predominant serotypes were 19, 19F, 6, 23 and 6A/B, which were belonged to 19%, 12%, 11%, 10% and 10% of isolates, respectively (Table 2). Of the 5349 isolates in the14 studies (9%) were identified as non-typeable serotypes.

Our analysis revealed substantial variations in the proportions of serotypes across geographical regions. The most prevalent serotypes identified in Iran were 6A, 19F, 6, 19, 6B, 2, and 15C which were found in 19%,16%,11%,10%,9% and 9% of isolates, respectively. Among 12 studies from Turkey, the predominant serotypes were 19F, 19, 23, and 23F, which were found in 12%, 21%, 10%, and 7% of isolates, respectively. The majority of Turkish studies were carried out from 2001 to 2015. All in all, seven studies were retrieved from Saudi Arabia from 2004 to 2014 in which the most prevalent serotypes were 23F, 19F, 19, 23, 6, and 6B, which were found in 10%, 7%, 21%, 10%, 19% and 7% of isolates, respectively. Serotype 23F and 19F were represented in all studies.

#### Antibiotic resistance profiles of *S. pneumoniae* isolates

Overall, 70 studies were recognized that reported antibiotic resistance pattern in *S. pneumoniae* isolates. The highest resistance rate was reported against cotrimoxazole. For this antibiotic, a pooled resistance proportion of 43% (95% CI; 34 %-53%) was identified. The prevalence of pneumococcal resistance to imipenem was 1% (95% CI; 0% -2%), which was the lowest proportion of antibiotic resistance. The prevalence of pneumococcal resistance to penicillin was 14% (95% CI; 10 %-18 %) (In 61 studies). Reported resistance for azithromycin, cefaclor, clarithromycin, chloramphenicol, erythromycin, and tetracycline was 24% (95% CI; 15 %-34%) (12 studies), 37% (95% CI; 22%-53 %) (7 studies), 23% (95% CI; 14%-33 %) (13 studies), 11% (95% CI; 8%-15%) (28 studies), 26% (95% CI; 21%-32%) (54 studies) and 29% (95% CI; 23%-36%) (35 studies), respectively (Figures 3-5).

Seven studies were identified from Turkey between 2000 to 2016 in which the highest resistance prevalence estimates were found to co-trimoxazole, tetracycline, cefaclor, erythromycin, clindamycin, azithromycin, and ciprofloxacin, which identified in 32% (15 studies), 24% (14 studies), 19% (2 studies), 18% (22 studies), 18% (9 studies), 17% (6 studies) and 13% (5 studies), respectively.

In Iran, among isolates collected from 2003 to 2017, the penicillin resistance was 23%. In 14 studies retrieved from Iran, about 33%, 32%, and 32% isolates were resistant to co-trimoxazole, erythromycin, and tetracycline.

In Saudi Arabia, by 12 studies published in 2000 to 2017, the pooled resistance prevalence was 19% to a penicillin (12 studies), 68% to co-trimoxazole (7 studies), 33% to erythromycin (8 studies), 23% to tetracycline (3 studies), 16% to clarithromycin (3 studies) and 16% to cefotaxime (3 studies).

Among five studies from Kuwait, published in 2000 to 2010, around of 22% (5 studies), 48% (2 studies), 42% (2 studies), 32% (2 studies), and 21% (2 studies) were resistant to penicillin, co-trimoxazole, erythromycin, tetracycline, and cefuroxime, respectively.

| erotype/serogroups* | No of studies | <b>Pooled Prevalence</b> | Pof Q test |
|---------------------|---------------|--------------------------|------------|
| ļ                   | 32            | 0.06                     | < 0.001    |
|                     | 23            | 0.05                     | < 0.001    |
|                     | 23            | 0.05                     | < 0.001    |
| F                   | 22            | 0.12                     | < 0.001    |
| SF                  | 21            | 0.08                     | < 0.001    |
| DA                  | 19            | 0.05                     | 0.07       |
|                     | 18            | 0.03                     | < 0.001    |
|                     | 15            | 0.11                     | < 0.001    |
|                     | 15            | 0.03                     | < 0.001    |
|                     | 15            | 0.02                     | 0.01       |
| 3                   | 13            | 0.07                     | < 0.001    |
| 7                   | 13            | 0.04                     | 0.11       |
| 1                   | 13            | 0.19                     | < 0.001    |
| ł                   | 13            | 0.10                     | < 0.001    |
|                     |               |                          |            |
|                     | 12<br>11      | 0.03                     | <0.001     |
| L                   |               | 0.05                     | < 0.001    |
|                     | 11            | 0.07                     | < 0.001    |
| ~                   | 11            | 0.03                     | < 0.001    |
| С                   | 10            | 0.03                     | < 0.001    |
|                     | 9             | 0.02                     | < 0.001    |
|                     | 9             | 0.02                     | 0.03       |
|                     | 8             | 0.03                     | 0.03       |
|                     | 8             | 0.07                     | < 0.001    |
|                     | 8             | 0.03                     | < 0.001    |
| Α                   | 7             | 0.05                     | < 0.001    |
|                     | 7             | 0.02                     | 0.06       |
|                     | 7             | 0.04                     | 0.01       |
|                     | 7             | 0.03                     | < 0.001    |
| F                   | 6             | 0.03                     | 0.01       |
| F                   |               |                          |            |
|                     | 6             | 0.01                     | 0.06       |
|                     | 6             | 0.02                     | < 0.001    |
| A                   | 5             | 0.02                     | 0.04       |
| B                   | 5             | 0.02                     | 0.29       |
| A                   | 5             | 0.04                     | < 0.001    |
| L                   | 4             | 0.04                     | 0.56       |
|                     | 4             | 0.01                     | 0.07       |
| 7/ <b>A</b>         | 4             | 0.03                     | 0.23       |
| √B                  | 4             | 0.10                     | < 0.001    |
| Α                   | 4             | 0.01                     | 0.67       |
| F                   | 4             | 0.02                     | 0.01       |
| F                   | 3             | 0.01                     | NA         |
| -                   | 3             | 0.01                     | NA         |
| В                   | 3             | 0.01                     | NA         |
|                     | 3             | 0.03                     | NA         |
| F                   | 3             | 0.02                     | NA         |
| B/C                 | 3             | 0.02                     | NA         |
|                     | 3             |                          |            |
| F                   |               | 0.01                     | NA         |
| B                   | 3             | 0.01                     | NA         |
| C                   | 2             | 0.02                     | NA         |
|                     | 2             | 0.01                     | NA         |
| F/A                 | 2             | 0.02                     | NA         |
|                     | 2             | 0.03                     | NA         |
| /A                  | 2             | 0.02                     | NA         |
|                     | 2             | 0.02                     | NA         |
| C                   | 2 2           |                          |            |
| L                   |               | 0.03                     | NA         |
| <b>A</b> .          | 2             | 0.05                     | NA         |
| /N                  | 2             | 0.01                     | NA         |
| A/B                 | 2             | 0.02                     | NA         |
| A/D                 | 2             | 0.02                     | NA         |
|                     |               |                          |            |
| A/D                 | 2             | 0.00                     | NA         |

Table 2. The pooled prevalence of different Serotypes of S. pneumoniae isolates

|              | Cont tab | ole 2. |         |
|--------------|----------|--------|---------|
| 19B          | 2        | 0.00   | NA      |
| G            | 2        | 0.08   | NA      |
| 32A          | 1        | 0.01   | NA      |
| 25           | 1        | 0.03   | NA      |
| 25F          | 1        | 0.05   | NA      |
| 7B/C         | 1        | 0.02   | NA      |
| 12           | 1        | 0.02   | NA      |
| 10F/A/B/C    | 1        | 0.01   | NA      |
| 33F/A/B/C    | 1        | 0.01   | NA      |
| 38           | 1        | 0.01   | NA      |
| 17A          | 1        | 0.01   | NA      |
| 7B           | 1        | 0.00   | NA      |
| 11C          | 1        | 0.00   | NA      |
| 28A          | 1        | 0.01   | NA      |
| 35           | 1        | 0.00   | NA      |
| 37           | 1        | 0.00   | NA      |
| 47           | 1        | 0.00   | NA      |
| 33F/A/37     | 1        | 0.01   | NA      |
| 15A/F        | 1        | 0.02   | NA      |
| 38/25A/F     | 1        | 0.02   | NA      |
| 7C/B/40      | 1        | 0.02   | NA      |
| 24A/B/F      | 1        | 0.01   | NA      |
| 35F/47F      | 1        | 0.01   | NA      |
| 8F           | 1        | 0.02   | NA      |
| 35F          | 1        | 0.02   | NA      |
| 11A/14       | 1        | 0.02   | NA      |
| 18A          | 1        | 0.01   | NA      |
| 12A          | 1        | 0.01   | NA      |
| 12B          | 1        | 0.01   | NA      |
| Non-typeable | 14       | 0.09   | < 0.001 |

 INOn-type able
 14
 0.09
 <0.001</th>

 \*; Items with number and letter are defined as serotypes, itemes with numbers refer to serogroupes. Note: in some studies the type of serotypes have not been determined and the serogroupes of isolates have just been characterized

|                                  |        |                   | %      |
|----------------------------------|--------|-------------------|--------|
| Study                            |        | ES (95% CI)       | Weight |
| Daoud, Z.et al (2011)            |        | 0.34 (0.26, 0.43) | 7.70   |
| Dashti, Anahita S et al (2012)   |        | 0.55 (0.51, 0.59) | 8.01   |
| Fouda S.I et al (2004)           |        | 0.18 (0.14, 0.22) | 7.95   |
| Gur D et al (2007)               |        | 0.17 (0.13, 0.22) | 7.91   |
| Gunullu et al (2000)             |        | 0.13 (0.06, 0.22) | 7.52   |
| Gonullu N et al (2008)           |        | 0.09 (0.04, 0.17) | 7.61   |
| Kohanteb J et al (2007) —        |        | 0.13 (0.07, 0.21) | 7.68   |
| Mosleh MN et al (2014)           |        | 0.16 (0.08, 0.29) | 7.28   |
| Cüneyt ÖZAKIN et al (2012)       |        | 0.11 (0.08, 0.15) | 7.94   |
| Sener B et al (2007)             |        | 0.17 (0.13, 0.22) | 7.94   |
| Senok A et al (2007)             |        | 0.31 (0.22, 0.41) | 7.63   |
| Swedan SF et al (2016) -         | *      | 0.55 (0.40, 0.68) | 7.25   |
| Telli M et al (2011)             |        | 0.39 (0.29, 0.50) | 7.57   |
| Overall (I^2 = 96.67%, p = 0.00) |        | 0.24 (0.15, 0.34) | 100.00 |
|                                  |        |                   |        |
| i                                | - I    | 1                 |        |
| 0.25                             | .5 .75 | 1                 |        |

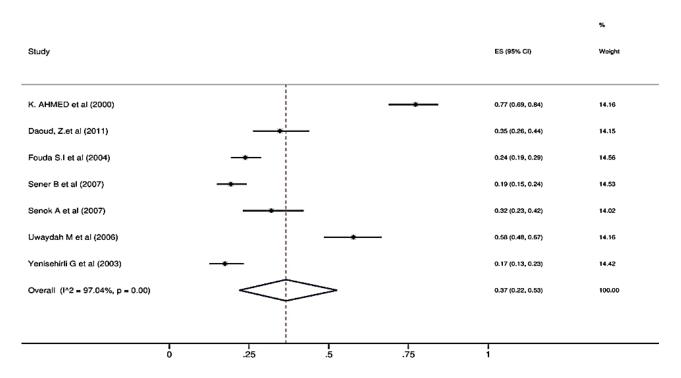
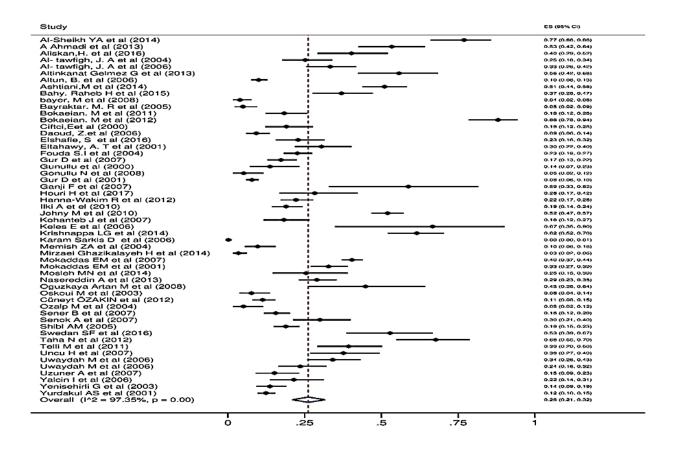




Figure 3. Forest plot of the meta analysis of antibiotic resistant among S. pneumoniae isolates. Azithromycin (upper) and Cefaclor(lower)



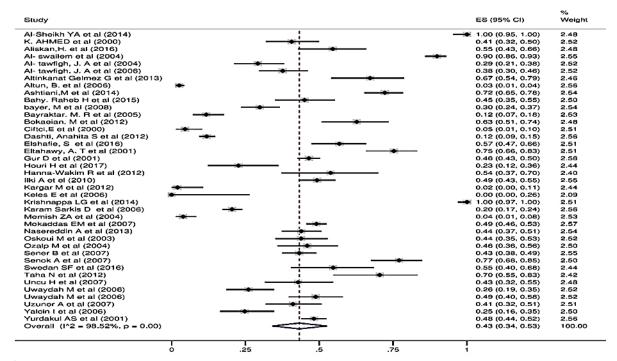
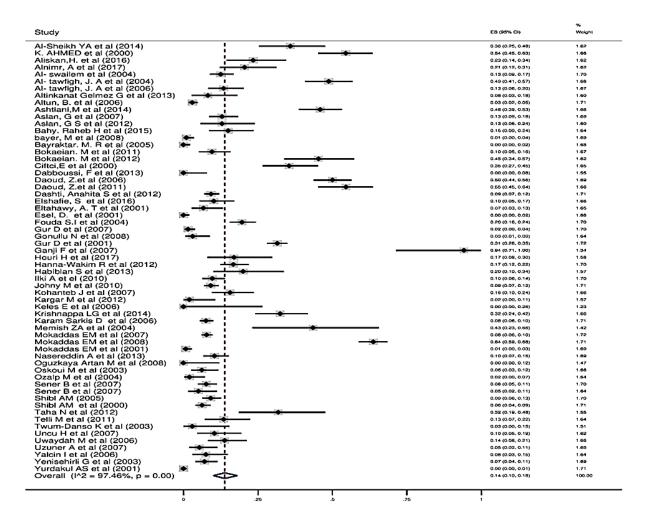




Figure 4. Forest plot of the meta analysis of antibiotic resistant among S. pneumoniae isolates. Erythromycin (upper) and Co-trimoxazole(lower)



| Study                                                       | ES (95% CI)         | %<br>Weigh |
|-------------------------------------------------------------|---------------------|------------|
| A Ahmadi et al (2013)                                       | 0.63 (0.52, 0.73)   | 2.84       |
| Al- swallem et al (2004)                                    | 0.24 (0.19, 0.29)   | 2.98       |
| Al- tawligh, J. A et al (2004)                              | 0.16 (0.10, 0.24)   | 2.89       |
| Al- tawfigh, J. A et al (2006)                              | 0.30 (0.23, 0.39)   | 2.91       |
| Altinkanat Gelmez G et al (2013)                            | 0.48 (0.35, 0.61)   | 2.76       |
| Bahy, Raheb H et al (2015)                                  | 0.45 (0.35, 0.55)   | 2.86       |
| Bayraktar, M. R et al (2005)                                | 0.04 (0.02, 0.09)   | 2.93       |
| Bokaelan, M et al (2011)                                    | 0.10 (0.05, 0.16)   | 2.91       |
| Bokaeian, M et al (2012)                                    | - 0.57 (0.45, 0.69) | 2.81       |
| Ciftci,E et al (2000)                                       | 0.22 (0.15, 0.31)   | 2.88       |
| Dashti, Anahita S et al (2012)                              | 0.66 (0.62, 0.70)   | 3.01       |
| Ishafie, S et al (2016)                                     | 0.38 (0.29, 0.48)   | 2.89       |
| Gur D et al (2007)                                          | 0.22 (0.17, 0.27)   | 2.97       |
| Sonullu N et al (2008)                                      | 0.35 (0.26, 0.45)   | 2.86       |
| Houri H ot al (2017)                                        | 0.25 (0.14, 0.38)   | 2.72       |
| Iki A et el (2010)                                          | 0.27 (0.21, 0.33)   | 2.97       |
| (ohanteb J et al (2007)                                     | 0.24 (0.17, 0.33)   | 2.89       |
| (argar M et al (2012)                                       | 0.02 (0.00, 0.11)   | 2.71       |
| <pre><eles (2006)<="" al="" e="" et="" pre=""></eles></pre> | 0.42 (0.15, 0.72)   | 2.03       |
| (aram Sarkis D et al (2006)                                 | 0.56 (0.52, 0.60)   | 3.01       |
| Mirzaei Ghazikalayeh H et al (2014)                         | 0.25 (0.21, 0.31)   | 2.98       |
| Mokaddas EM et al (2007)                                    | 0.30 (0.27, 0.34)   | 3.02       |
| Mokaddas EM et al (2001)                                    | 0.37 (0.31, 0.43)   | 2.97       |
| Dguzkaya Artan M et al (2008)                               | 0.45 (0.26, 0.64)   | 2.51       |
| Oskoul M et al (2003)                                       | 0.36 (0.28, 0.45)   | 2.90       |
| Sener B et al (2007)                                        | 0.17 (0.13, 0.22)   | 2.98       |
| Senok A et al (2007)                                        | 0.17 (0.10, 0.26)   | 2.86       |
| Taha N et al (2012) —                                       | 0.75 (0.60, 0.87)   | 2.67       |
| Felli M et al (2011)                                        | 0.36 (0.26, 0.47)   | 2.84       |
| Jncu H et al (2007)                                         | 0.31 (0.21, 0.43)   | 2.81       |
| Jwaydah M et al (2006)                                      | 0.16 (0.10, 0.24)   | 2.89       |
| Jwaydah M et al (2006)                                      | 0.21 (0.14, 0.29)   | 2.89       |
| Jzuner A et al (2007)                                       | 0.16 (0.10, 0.24)   | 2.88       |
| (enisehiri) G et al (2003)                                  | 0.19 (0.14, 0.25)   | 2.95       |
| Yurdakul AS et al (2001)                                    | 0.09 (0.07, 0.12)   | 3.01       |
| Overall (I^2 = 96.76%, p = 0.00)                            | 0.29 (0.23, 0.36)   | 100.00     |
|                                                             | .75 1               |            |

Figure 5. Forest plot of the meta analysis of antibiotic resistant among S. pneumoniae isolates. Penicillin (upper) and Tetracycline (lower)

| Antibiotic      | No of studies | Pooled Resistance proportion | P of Q test | $\mathbf{I}^2$ |
|-----------------|---------------|------------------------------|-------------|----------------|
| Ampicillin      | 8             | 0.08                         | < 0.001     | 97%            |
| Azithromycin    | 13            | 0.24                         | < 0.001     | 97%            |
| Cefazolin       | 2             | 0.09                         | NA          | NA             |
| Cefepime        | 1             | 0.08                         | NA          | NA             |
| Cefixime        | 1             | 0.20                         | NA          | NA             |
| Ceftriaxone     | 26            | 0.04                         | < 0.001     | 90%            |
| Cefuroxime      | 12            | 0.18                         | < 0.001     | 96%            |
| Clindamycin     | 16            | 0.16                         | < 0.001     | 94%            |
| Imipenem        | 6             | 0.01                         | < 0.001     | 77%            |
| Linezolid       | 7             | 0.00                         | < 0.001     | 84%            |
| Meropenem       | 2             | 0.00                         | NA          | NA             |
| Moxifloxacin    | 2             | 0.00                         | NA          | NA             |
| Ofloxacin       | 10            | 0.04                         | < 0.001     | 869            |
| Penicillin      | 61            | 0.14                         | < 0.001     | 989            |
| Tigecycline     | 2             | 0.03                         | NA          | NA             |
| Trimethoprim    | 1             | 0.38                         | NA          | NA             |
| Vancomycin      | 34            | 0.00                         | < 0.001     | 60%            |
| Amoxicillin-    | 12            | 0.02                         | < 0.001     | 889            |
| clavulanate     |               |                              |             |                |
| Amikacin        | 1             | 0.52                         | NA          | NA             |
| Aztreonam       | 1             | 0.26                         | NA          | NA             |
| Cefaclor        | 7             | 0.37                         | < 0.001     | 979            |
| Cefamandole     | 1             | 0.00                         | NA          | NA             |
| Cefdinir        | 1             | 0.15                         | NA          | NA             |
| Cefotaxime      | 23            | 0.04                         | < 0.001     | 939            |
| Cefprozil       | 3             | 0.05                         | NA          | NA             |
| Ceftazidime     | 2             | 0.17                         | NA          | NA             |
| Chloramphenicol | 28            | 0.11                         | < 0.001     | 95%            |
| Ciprofloxacin   | 11            | 0.02                         | < 0.001     | 839            |
| Clarithromycin  | 13            | 0.23                         | < 0.001     | 979            |
| Cloxacillin     | 1             | 0.02                         | NA          | NA             |
| Co-trimoxazole  | 40            | 0.43                         | <0.001      | 999            |
| Erythromycin    | 54            | 0.26                         | <0.001      | 989            |
| Levofloxacin    | 15            | 0.20                         | <0.001      | 869            |

|                |    | Cont table 3. |         |       |
|----------------|----|---------------|---------|-------|
| Nalidixic acid | 1  | 0.02          | NA      | NA    |
| Norfloxacin    | 1  | 0.44          | NA      | NA    |
| Oxacillin      | 5  | 0.43          | < 0.001 | 99%   |
| Piperacillin   | 1  | 0.00          | NA      | NA    |
| Rifampin       | 5  | 0.01          | < 0.001 | 98.4% |
| Roxithromycin  | 1  | 0.18          | NA      | NA    |
| Spiramycin     | 1  | 0.18          | NA      | NA    |
| Telithromycin  | 4  | 0.00          | 0.27    | 23%   |
| Tetracycline   | 35 | 0.29          | < 0.001 | 97%   |

# Discussion

This systematic review provides a summary of the prevalence, distribution of serotypes, and the antimicrobial Susceptibility Pattern of *Streptococcus pneumoniae* in the Middle East region. The prevalence of the pneumococcal nasopharyngeal carriage rate significantly varies by geographically in the Middle East region. The highest and lowest rates of the pneumococcal nasopharyngeal carriage were reported from Egypt and Turkey, which was 100% and 4%, respectively (60). Moreover, there are limited studies about nasopharyngeal carriage in other countries such as Egypt, Jordan, Kuwait, Palestine, Syria, United Arab Emirates, Iraq, Yemen, Oman, Bahrain, and Lebanon. Therefore, these data may not be enough to reflect the pneumococcal carriage prevalence in these countries, and more studies are needed in these areas.

The most frequent serotypes in young children's carriage before the introduction of pneumococcal conjugate vaccines (PCVs) in low (64.8%) and lowermiddle-income countries (47.8%) were 6A, 6B, 19A, 19F, and 23F (79). After the introduction of PCVs, the rates of vaccine-type carriage and Invasive Pneumococcal Disease (IPD) decreased (80), but the rates of colonization by non-vaccine-type of *S. pneumoniae* increased (80).

Serogroup 19 and serotype 19F were the most prevalent and represented in most of the geographical regions in the Middle East. Serogroup 19 is one of the common causes of outbreaks and has been reported in several invasive diseases such as otitis media (81). Before the introduction of PCV7, most of the IPD was caused by serogroups 19, 6, 14, and 18 in children less than five years, and also, the main cause of IPD among adults was serotype 3. After the introduction of PCV7, serotypes 19A and 3 were prevalent in young children and adults, respectively. Serotypes 19A and 19F were associated with invasive disease and mortality rates worldwide. Serotype 19A is also associated with resistance to penicillin, and according to the Asian Network for Surveillance of Resistant Pathogens (ANSORP) report, it is prevalent in Asian countries, and 28% of penicillin-resistant strains belong to this serotype (82).

Serotype 23F is another most common serotype in the Middle East and was included in the PCV7. This serotype had a high incidence in this area and other regions, such as Africa and Asian countries, where no conjugate vaccine has been introduced (83).

In the present systematic review, pneumococcal macrolide resistance was reported for azithromycin (24%), clarithromycin (23%), and erythromycin (26%). The erythromycin resistance rate in Kuwait, Saudi Arabia, Iran, Lebanon, and Turkey was 42%, 33%, 32%, 22%, and 18%, respectively. The macrolide resistance rate is varied in different countries, and between 20% and 40% of the pneumococcal isolates is macrolide-resistant [84]. Higher rates of macrolide resistance have been reported in East Asia countries such as China (95%) and Japan (>95%) (85,86). The pooled resistance prevalence of cotrimoxazole was 43%. Generally, pneumococcal antibiotic resistance in the Middle East countries has increased in recent years, and according to the World Health Organization (WHO) report in 2015, in most of these countries, antibiotic resistance Surveillance programs have not performed (87).

Antibiotic resistance among pneumococcus isolates is accelerated in the Middle East area in recent years. In the present study, the highest rate of resistance among pneumococcal isolates was against co-trimoxazole, while the lowest proportion of antibiotic resistance was against imipenem. It seems that the use of co-trimoxazole as a treatment regimen in the pneumococcal infections will not be useful. The common serotypes in the Middle East region were 19, 19F, 6, 23, and 6A/B serotypes, which are included in pneumococcal conjugate-vaccine. This data shows that pneumococcal conjugate vaccines (PCVs) can be effective against invasive pneumococcal infections in the Middle East region.

## References

1. Borg M, Tiemersma E, Scicluna E, Van De Sande-Bruinsma N, De Kraker M, Monen J, et al. Prevalence of penicillin and erythromycin resistance among invasive Streptococcus pneumoniae isolates reported by laboratories in the southern and eastern Mediterranean region. Clin Microbiol Infect 2009;15:232-7.

- Al-Sherikh Y, K Gowda L, Ali M, Marie M, John J, Khaled Homoud Mohammed D, et al. distribution of serotypes and antibiotic susceptibility patterns among invasive pneumococcal diseases in Saudi Arabia. Ann Lab Med 2014;34:210-5.
- Habibian S, Mehrabi-Tavana A, Ahmadi Z, Izadi M, Jonaidi N, Darakhshanpoure J, et al. Serotype distribution and antibiotics susceptibility pattern of Streptococcus pneumonia in Iran. Iran Red Crescent Med J 2013;15:e8053.
- 4. Jaiswal N, Singh M, Das RR, Jindal I, Agarwal A, Thumburu KK, et al. distribution of serotypes, vaccine coverage, and antimicrobial susceptibility pattern of Streptococcus pneumoniae in children living in SAARC countries: a systematic review. PloS one 2014;9:e108617.
- Mahboobi R, Afshar D, Pourmand MR, and Mashhadi R. Autolytic activity and plasma binding study of Aap, a novel minor autolysin of *Streptococcus pneumoniae*. Acta Med Iran 2016;54:196-200.
- Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 2008;6:288-301.
- Institute JB. The Joanna Briggs Institute Reviewers' Manual 2014 edition. Adelaide: JBI, 2014.
- Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health 2014;72:39.
- Ahmadi A, Talebi M, Irajian G. High Prevalence of Erythromycin-and Tetracycline-Resistant Clinical Isolates of Streptococcus pneumoniae in Iran. Infect Dis Clin Pract 2013;21:299-301.
- Ahmed K, Martinez G, Wilson S, Yoshida R, Dhar R, Mokaddas E, et al. The prevalence and clonal diversity of penicillin-resistant Streptococcus pneumoniae in Kuwait. Epidemiol Infect 2000;125:573-81.
- Aliskan HE, Colakoglu S, Gocmen JS. Antibiotic resistance of streptococcus pneumoniae and haemophilus influenzae isolated from respiratory tract specimens. Cukurova Med J 2016;41:201-7.
- Al-Mazrou A, Twum-Danso K, Al Zamil F. Streptococcus pneumoniae seroty pes/serogroups causing invasive disease in Riyadh, Saudi Arabia: extent of coverage by pneumococcal vaccines. Ann Saudi Med 2005;25:94-9.
- Alnimr AM, Farhat M. Phenotypic and molecular study of pneumococci causing respiratory tract infections A 3-year prospective cohort. Saudi Med J 2017;38:350-8.

- Al-Swailem AM, Kadry AA, Fouda SI, Shibl AM, Shair OH. Phenotypic and genotypic characterization of invasive Streptococcus pneumoniae clinical isolates. Curr Ther Res Clin Exp 2004;65:423-32.
- Al-Tawfiq JA. Pattern of antibiotic resistance of Streptococcus pneumoniae in a hospital in the Eastern Province of Saudi Arabia. J Chemother 2004;16:259-63.
- Al-Tawfiq JA. Antibiotic resistance of pediatric isolates of Streptococcus pneumoniae in a Saudi Arabian hospital from 1999 to 2004. Med Sci Monit 2006;12:CR471-5.
- Altinkanat Gelmez G, Soysal A, Kuzdan C, Karadag B, Hasdemir U, Bakir M, et al. [Serotype distribution and antibiotic susceptibilities of Streptococcus pneumoniae causing acute exacerbations and pneumonia in children with chronic respiratory diseases]. Mikrobiyol Bul 2013;47:684-92.
- Altun B, Gur D, Kocagoz S, Hascelik G, Unal S. Molecular epidemiology of penicillin resistant Streptococcus pneumoniae strains in Turkey. A multicenter study. Ann Microbiol 2006;56:185-90.
- Altun HU, Hascelik G, Gur D, Eser OK. Invasive pneumococci before the introduction of pneumococcal conjugate vaccine in Turkey: antimicrobial susceptibility, serotype distribution, and molecular identification of macrolide resistance. J Chemother 2015;27:74-9.
- Ashtiani MTH, Sadeghian M, Nikmanesh B, Pourakbari B, Mahmoudi S, Mamishi S. Antimicrobial susceptibility trends among Streptococcus pneumoniae over an 11-year period in an Iranian referral children Hospital. Iran J Microbiol 2014;6:382-6.
- 21. Aslan G, Ernekdas G, Bayer M, Serin MS, Kuyucu N, Kanik A. Serotype distribution of Streptococcus pneumoniae strains in the nasopharynx of healthy Turkish children. Indian J Med Res 2007;125:582-7.
- Aslan G, Tezcan S, Delialioglu N, Aydin FE, Kuyucu N, Emekdas G. [Evaluation of penicillin-binding protein genotypes in penicillin susceptible and resistant Streptococcus pneumoniae isolates]. Mikrobiyol Bul 2012;46:190-201.
- Ataee RA, Habibian S, Mehrabi-Tavana A, Ahmadi Z, Jonaidi N, Salesi M. Determination of vancomycin minimum inhibitory concentration for ceftazidime resistant Streptococcus pneumoniae in Iran. Ann Clin Microbiol Antimicrob 2014;13:53.
- Bahy RH, Hamouda HM, Shahat AS, Yassin AS, Amin MA. Emergence of Neoteric Serotypes Among Multidrug Resistant Strains of Streptococcus pneumoniae Prevalent in Egypt. Jundishapur J Microbiol 2016;9:e30708.
- 25. Bayer M, Aslan G, Emekdas G, Kuyucu N, Kanik A. [Nasopharyngeal carriage of Streptococcus pneumoniae in healthy children and multidrug resistance]. Mikrobiyol Bul

2008;42:223-30.

- 26. Bayraktar MR, Durmaz B, Kalcioglu MT, Durmaz R, Cizmeci Z, Aktas E. Nasopharyngeal carriage, antimicrobial susceptibility, serotype distribution and clonal relatedness of Streptococcus pneumoniae isolates in healthy children in Malatya, Turkey. Int J Antimicrob Agents 2005;26:241-6.
- Bokaeian M, Khazaei HA, Javadimehr M. Nasopharyngeal Carriage, Antibiotic Resistance and Serotype Distribution of Streptococcus Pneumoniae among Healthy Adolescents in Zahedan. Iran Red Crescent Med J 2011;13:328-33.
- Bokaeian M, Khazaei HA, Javadimehr M. Serotype distribution and antimicrobial resistance of invasive Streptococcus pneumoniae isolates from children in Zahedan, Iran. African J Microbiol Res 2012;6:28-33.
- Ceyhan M, Ozsurekci Y, Gurler N, Ozkan S, Sensoy G, Belet N, et al. Distribution of Streptococcus pneumoniae Serotypes That Cause Parapneumonic Empyema in Turkey. Clin Vaccine Immunol 2013;20:972-6.
- Ciftci E, Dogru U, Aysev D, Ince E, Guriz H. Nasopharyngeal colonization with penicillin-resistant Streptococcus pneumoniae in Turkish children. Pediatr Int 2000;42:552-6.
- Dabboussi F, Allouche S, Mallat H, Hamze M. Prevalence of first-step mutants among levofloxacin-susceptible isolates of Streptococcus pneumoniae in north Lebanon. J Chemother 2013;25:328-31.
- 32. Daoud Z, Cocozaki A, Hakime N. Antimicrobial susceptibility patterns of Haemophilus influenzae and Streptococcus pneumoniae isolates in a Beirut general university hospital between 2000 and 2004. Clin Microbiol Infect 2006;12:86-90.
- Daoud Z, Kourani M, Saab R, Nader MA, Hajjar M. Resistance of Streptococcus pneumoniae isolated from Lebanese patients between 2005 and 2009. Rev Esp Quimioter 2011;24:84-90.
- Dashti AS, Abdinia B, Karimi A. Nasopharyngeal carrier rate of Streptococcus pneumoniae in children: serotype distribution and antimicrobial resistance. Arch Iran Med 2012;15:500-3.
- Elshafie S, Taj-Aldeen SJ. Emerging resistant serotypes of invasive Streptococcus pneumoniae. Infect Drug Resist 2016;9:153-60.
- Eltahawy AT. Antimicrobial resistance of Streptococcus pneumoniae at a university hospital in Saudi Arabia. J Chemother 2001;13:148-53.
- Esel D, Sumerkan B, Kocagoz S. Epidemiology of penicillin resistance in Streptococcus pneumoniae isolates in Kayseri, Turkey. Clin Microbiol Infect 2001;7:548-52.
- Fouda S, Kadry A, Shibl A. β-lactam and macrolide resistance and serotype distribution among Streptococcus

pneumoniae isolates from Saudi Arabia. J Chemother 2004;16:517-23.

- Gonullu N, Berkiten R. Antimicrobial resistance of clinical isolates of Streptococcus pneumoniae in Istanbul. Int J Antimicrob Agents 2000;16:77-8.
- 40. Gonullu N, Catal F, Kucukbasmaci O, Ozdemir S, Torun MM, Berkiten R. Comparison of in vitro activities of tigecycline with other antimicrobial agents against Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis in two university hospitals in Istanbul, Turkey. Chemotherapy 2009;55:161-7.
- Guldemir D, Acar S, Otgun SN, Unaldi O, Gozalan A, Ertek M, et al. High-Level Genetic Diversity among Invasive Streptococcus pneumoniae Isolates in Turkey. Japanese Journal of Infectious Diseases. 2016;69:207-12.
- 42. Gur D, Guciz B, Hascelik G, Esel D, Sumerkan B, Over U, et al. Streptococcus pneumoniae penicillin resistance in Turkey. J Chemother 2001;13:541-5.
- 43. Gur D, Mulazimoglu L, Unal S. In vitro susceptibility of respiratory isolates of streptococcus pneumoniae and streptococcus pyogenes to telithromycin and 11 other antimicrobial agents: Turkish results of E-Baskett-II Surveillance Study. Mikrobiyol Bul 2007;41:1-9.
- 44. Hanna-Wakim R, Chehab H, Mahfouz I, Nassar F, Baroud M, Shehab M, et al. Epidemiologic characteristics, serotypes, and antimicrobial susceptibilities of invasive Streptococcus pneumoniae isolates in a nationwide surveillance study in Lebanon. Vaccine 2012;30:G11-7.
- 45. Houri H, Karimi A, Saee Y, Fallah F, Rahbar M, Tabatabaei SR. Distribution of capsular types and drug resistance patterns of invasive pediatric Streptococcus pneumoniae isolates in Teheran, Iran. Int J Infect Dis 2017;57:21-6.
- 46. Ilki A, Sairoglu P, Elgormus N, Soyletir G. Trends in Antibiotic Susceptibility Patterns of Streptococcus Pneumoniae and Haemophilus Influenzae Isolates: Four Years Follow Up. Mikrobiyol Bul 2010;44:169-75.
- Imani R, Rouhi H, Ganji F. Prevalence of antibiotic resistance among bacteria isolates of lower respiratory tract infection in COPD Shahrekord Iran, 2005. Pakistan J Med Sci 2007;23:438-40.
- 48. Karam Sarkis D, Hajj A, Adaime A. [Evolution of the antibiotic resistance of Streptococcus pneumoniae from 1997 to 2004 at Hotel-Dieu de France, a university hospital in Lebanon]. Pathol Biol (Paris) 2006;54:591-5.
- Kargar M, Baghernejad M, Ghorbani-Dalini S, Najafi A. Multi-drug resistance and molecular pattern of erythromycin and penicillin resistance genes in Streptococcus pneumoniae. African J Biotechnol 2012;11:968-73.
- 50. Keles E, Aral M, Alpay HC. Antibiotic sensitivities of

Streptococcus pneumoniae, viridans streptococci, and group A hemolytic streptococci isolated from the maxillary and ethmoid sinuses. Kulak Burun Bogaz Ihtis Derg 2006;16:18-24.

- 51. Kohanteb J, Sadeghi E. Penicillin-resistant Streptococcus pneumoniae in Iran. Med Princ Pract 2007;16:29-33.
- 52. Krishnappa LG, Marie MA, John J, Dabwan KH, Shashidhar PC. Serological and molecular capsular typing antibiotic susceptibility of Streptococcus pneumoniae isolates from invasive and non-invasive infections. Acta Microbiol Immunol Hung 2014;61:173-9.
- Memish ZA, Alkhy HHB, Shibl AA, Barrozo CP, Gray GC. Streptococcus pneumoniae in Saudi Arabia: antibiotic resistance and serotypes of recent clinical isolates. Int J Antimicrob Agents 2004;23:32-8.
- 54. Mirzaei Ghazi Kalayeh H, Moniri R, Moosavi SGA, Rezaei M, Yasini M, Valipour M. Serotyping, Antibiotic Susceptibility and Related Risk Factors Aspects of Nasopharyngeal Carriage of Streptococcus pneumoniae in Healthy School Students. Iran J Public Health 2014;43:1284-90.
- Mokaddas EM, Rotimi VO, Albert MJ. Increasing prevalence of antimicrobial resistance in Streptococcus pneumoniae in Kuwait: Implications for therapy. Microb Drug Resist 2007;13:227-33.
- 56. Mokaddas EM, Rotimi VO, Albert MJ. Implications of Streptococcus pneumoniae penicillin resistance and serotype distribution in Kuwait for disease treatment and prevention. Clin Vaccine Immunol 2008;15:203-7.
- Mokaddas EM, Wilson S, Sanyal SC. Prevalence of penicillin-resistant Streptococcus pneumoniae in Kuwait. J Chemother 2001;13:154-60.
- Mosleh MN, Gharibi M, Alikhani MY, Saidijam M, Vakhshiteh F. Antimicrobial susceptibility and analysis of macrolide resistance genes in Streptococcus pneumoniae isolated in Hamadan. Iran J Basic Med Sci 2014;17:595-9.
- Nasereddin A, Shtayeh I, Ramlawi A, Salman N, Salem I, Abdeen Z. Streptococcus pneumoniae from Palestinian Nasopharyngeal Carriers: Serotype Distribution and Antimicrobial Resistance. Plos One 2013;8:e82047.
- Oguzkaya Artan M, Baykan Z, Artan C. Antimicrobial susceptibility of Streptococcus pneumoniae in the oropharynx of healthy preschool children and identification of risk factors. Jpn J Infect Dis.2008;61:302-3.
- 61. Oskoui M, Feyzabadi M, Amirkhani A. Drugsusceptibility of Streptococcus pneumoniae strains isolated in Tehran, Iran. Archives of Iranian medicine 2003;6:192-5.
- Ozakin C, Guler H, Gurcuoglu E, Ozbey SB, Kazak E, Sinirtas AM. A study on molecular characterization of macrolide resistance mechanism among isolates of

Streptococcus pneumoniae from the southern Marmara region of Turkey, as well as resistance to macrolides and penicillin in these isolates. Turkish J Med Sci 2012;42:137-44.

- Ozalp M, Kanra G, Gur D. Distribution of serotypes and antimicrobial resistance of Streptococcus pneumoniae in a children's hospital in Turkey. Turkish J Pediatr 2004;46:329-32.
- Sener B, Tunckanat F, Ulusoy S, Tunger A, Soyletir G, Mulazimoglu L, et al. A survey of antibiotic resistance in Streptococcus pneumoniae and Haemophilus influenzae in Turkey, 2004 2005. J Antimicrob Chemother 2007;60:587-93.
- 65. Senok A, Al-Zarouni M, Al-Najjar J, Nublusi A, Panigrahi D. Antimicrobial resistance among Streptococcus pneumoniae and Haemophilus influenzae isolates in the United Arab Emirates: 2004-2006. J Infect Dev Ctries 2007;1:296-302.
- Shibl AM. Patterns of macrolide resistance determinants among S-pyogenes and S-pneumoniae isolates in Saudi Arabia. J Int Med Res 2005;33:349-55.
- Shibl AM, Al Rasheed AM, Elbashier AM, Osoba AO. Penicillin-resistant and -intermediate Streptococcus pneumoniae in Saudi Arabia. J Chemother 2000;12:134-7.
- Swedan SF, Hayajneh WA, Bshara GN. Genotyping and serotyping of macrolide and multidrug resistant Streptococcus pneumoniae isolated from carrier children. Indian J Med Microbiol 2016;34:159-65.
- 69. Taha N, Araj GF, Wakim RH, Kanj SS, Kanafani ZA, Sabra A, et al. Genotypes and serotype distribution of macrolide resistant invasive and non-invasive Streptococcus pneumoniae isolates from Lebanon. Ann Clin Microbiol Antimicrob 2012;11:2.
- Tavana AM, Ataee RA, Esmaili D. SerotypingDistribution of Invasive Pneumococcal Disease (IPD) in Iranian Patients. J Pure Appl Microbiol 2012;6:155-60.
- 71. Telli M, Eyigor M, Gultekin B, Aydin N. Evaluation of resistance mechanisms and serotype and genotype distributions of macrolide-resistant strains in clinical isolates of Streptococcus pneumonia in Aydin, Turkey. Journal of Infection and Chemotherapy. 2011;17:658-64.
- 72. Twum-Danso K, Al-Mazrou AM, Al-Zamil FA. Penicillin resistance in serogroups/serotypes of Streptococcus pneumoniae causing invasive infections in Central Saudi Arabia. Saudi Med J 2003;24:1210-3.
- 73. Uncu H, Colakoglu S, Turunc T, Demiroglu YZ, Arslan H. [In vitro resistance rates of Streptococcus pneumoniae and Haemophilus influenzae clinical isolates to the antibiotics used in therapy]. Mikrobiy ol Bul 2007;41:441-6.
- 74. Uway dah M, Mokhbat JE, Karam-Sarkis D, Baroud-Nassif R, Rohban T. Penicillin-resistant Streptococcus

pneumoniae in Lebanon: the first nationwide study. Int J Antimicrob Agents 2006;27:242-6.

- Uzuner A, Ilki A, Akman M, Gundogdu E, Erbolukbas R, Kokacya O, et al. Nasopharyngeal carriage of penicillinresistant Streptococcus pneumoniae in healthy children. Turk J Pediatr 2007;49:370-8.
- Yalcin I, Gurler N, Alhan E, Yaman A, Turgut M, Celik U, et al. Serotype distribution and antibiotic susceptibility of invasive Streptococcus pneumoniae disease isolates from children in Turkey, 2001-2004. Eur J Pediatr 2006;165:654-7.
- 77. Yenisehirli G, Sener B. [Antibiotic resistance and serotype distribution of Streptococcus pneumoniae strains isolated from patients at Hacettepe University Medical Faculty]. Mikrobiyol Bul 2003;37:1-11.
- Yurdakul AS, Calisir HC, Atasever M, Ordulu L, Ogretensoy M. Resistance to penicillin among the Streptococcus pneumoniae in Turkey. Eur Respir J 2001;18:436.
- 79. Adegbola RA, DeAntonio R, Hill PC, Roca A, Usuf E, Hoet B, et al. Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lowermiddle income countries: a systematic review and metaanalysis. PLoS One 2014;9:e103293.
- Usuf E, Bottomley C, Adegbola RA, Hall A. Pneumococcal carriage in sub-Saharan Africa--a systematic review. PLoS One 2014;9:e85001.
- 81. Zivich PN, Grabenstein JD, Becker-Dreps SI, Weber DJ.

Streptococcus pneumoniae outbreaks and implications for transmission and control: a systematic review. Pneumonia (Nathan) 2018;10:11.

- Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, et al. Pneumococcal Capsules and Their Types: Past, Present, and Future. Clin Microbiol Rev 2015;28:871-99.
- 83. Jauneikaite E, Jefferies JM, Hibberd ML, Clarke SC. Prevalence of Streptococcus pneumoniae serotypes causing invasive and non-invasive disease in South East Asia: a review. Vaccine 2012;30:3503-14.
- Cherazard R, Epstein M, Doan TL, Salim T, Bharti S, Smith MA. Antimicrobial Resistant Streptococcus pneumoniae: Prevalence, Mechanisms, and Clinical Implications. Am J Ther 2017;24:e361-e9.
- 85. Zhao C, Li Z, Zhang F, Zhang X, Ji P, Zeng J, et al. Serotype distribution and antibiotic resistance of Streptococcus pneumoniae isolates from 17 Chinese cities from 2011 to 2016. BMC Infect Dis 2017;17:804.
- Kawaguchiya M, Urushibara N, Aung MS, Morimoto S, Ito M, Kudo K, et al. Emerging non-PCV13 serotypes of noninvasive Streptococcus pneumoniae with macrolide resistance genes in northern Japan. New Microbes New Infect 2016;9:66-72.
- 87. El Moujaber G, Osman M, Rafei R, Dabboussi F, Hamze M. Molecular mechanisms and epidemiology of resistance in Streptococcus pneumoniae in the Middle East region. J Med Microbiol 2017;66:847-58.