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Abstract- This study aims to illustrate the problem of (Quasi) Complete Separation in the sparse data pattern 

occurring medical data. We presented the failure of traditional methods and then provided an overview of 

popular remedial approaches to reduce bias through vivid examples. Penalized maximum likelihood estimation 

and Bayesian methods are some remedial tools introduced to reduce bias. Data from the Tehran Thyroid and 

Pregnancy Study, a two-phase cohort study conducted from September 2013 through February 2016, was 

applied for illustration. The bias reduction of the estimate showed how sufficient these methods are compared 

to the traditional method. Extremely large measures of association such as the Risk ratios along with an 

extraordinarily wide range of confidence interval proved the traditional estimation methods futile in case of 

sparse data while it is still widely applying and reporting. In this review paper, we introduce some advanced 

methods such as data augmentation to provide unbiased estimations. 
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Introduction 
 

Sparse data bias happens in rare-events in medical 

data, causing distorting the results. Occasionally, we face 

an error as “the maximum likelihood estimates do not 

exist” when running the binary regression models. In this 

case, an extremely large value and an unusually wide 

range of confidence intervals were obtained for the 

estimated parameter. It occurs in a situation called 

“Separation”. This phenomenon is defined as a state when 

some values of the predictor are associated with only one 

outcome value. For example, if all cases of preeclampsia 

occurred in women with gestational diabetes mellitus 

(1,2). Despite the existence of different statistical 

techniques to avoid this problem (3-8), many recently-

published medical research works are subjected to sparse 

data bias, the very big value of OR as well as 

extraordinary wide 95%CI because of large SD proved 

the existence of small samples and sparse data (9-19). 

In this paper, we aim at illustrating this phenomenon 

in practice and providing a comprehensive overview of 

remedial methods and a catalog of efficient references to 

make medical researchers familiar with these techniques 

through inspiring examples. We pointed out these 

methodological approaches with lucid language and 

presented them through hypothetical and real data. As an 

applied example, data from the Tehran Thyroid and 

Pregnancy Cohort Study, conducted from September 

2013 through February 2016, was applied for illustration.  

 

Illustration of the problem: when the model fails and 

how to identify the complete or Quasi-Complete 

Separation 

Consider the data pattern illustrated in Figure1-Right. 

A binary logistic regression through SPSS provided a 

warning: “The log-likelihood value is approaching zero, 

there may be a complete separation in the data, the 

maximum likelihood (MLE) estimates do not exist.”  

Results showed a big Odds Ratio (OR) and also the 

inestimable upper limit of 95% CI for OR due to the large 
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estimated standard error (Table 1A). Moreover, in a 

weaker condition called quasi-complete separation, there 

is not perfect discrimination for all observations (Figure1-

Left). After fitting the logistic regression model, a 

warning signal regarding quasi-complete separation was 

reported “A quasi-complete separation may exist in the 

data, the maximum likelihood estimates do not exist” 

(Table 1B). In practice, Quasi-complete separation is 

more common than complete separation. To check the 

existence of an empty cell, which is a sufficient condition 

for the separation drawing a 2 by 2 table of each predictor 

with Y is highly recommended. 

 

 
Figure 1. An illustration of Complete (Right) and quasi-Complete (Left) Separation 

 

Table 1 A. SPSS output obtained from fitting a logistic regression to estimate OR (95% CI) in the presence of 

complete separation 

Parameter B SE 
Hypothesis Test 

OR= Exp (B) 
95% Wald CI for OR 

Wald Chi2 Df Sig. Lower Upper 

(Intercept) -1.469E-9 10072.2351 .000 1 1.000 1.000 .000 .a 

X 1.913 1007.2235 .000 1 .998 6.772 .000 .a 

Table1 B. SPSS output obtained from fitting a logistic regression to estimate OR (95% CI) in the presence of quasi-complete 

separation 

Parameter B SE 
Hypothesis Test 

OR= Exp (B) 
95% Wald CI for OR 

Wald Chi2 Df Sig. Lower Upper 

(Intercept) 18.341 9607.2831 .000 1 .998 92299888.36 .000 .a 

X 1.834 960.7283 .000 1 .998 6.259 .000 .a 

Dependent Variable: Y, Model: (Intercept), x, aSet to system missing due to overflow 

 

 

Materials and Methods 

 

Remedies for the non-existence of MLEs due to 

separation  

Penalization approaches 

Firth penalization 

Firth 1993 firstly presents a bias reduction of the MLE 

method (20). It is like adding 0.5 to each cell of a 2x2 

table (21). Technically, it is proportional to the square 

root of the determinant of the Fisher information matrix 

for the parameters of interest. Firth Penalization is not 

always a problem-solving technique due to the largely 

biased estimate, especially in the case of ratio estimates 

such as odds ratio or relative risk (7,22). Table 2 

illustrates (Quasi) complete separation. Remedy through 

Firth's penalization was presented there. Firth 

penalization tried to shrink OR toward zero while its 

confidence interval is still extraordinarily wide (23-25).  

 

Data augmentation  

Data Augmentation (DA) is a method that adds any 

prior information as a penalty to the actual data to obtain 

the unbiased MLEs in the form of so-call pseudo 

information augmentation. It applies inverse-variance 

weighted averaging for estimation (26). This technique 

provides an effective remedy to treat the bias caused by 

data sparseness (27-30). Compatibility of the prior and 

data is of great importance; DA fails in case of 

incompatibility causes misleading results (5,31). It means 

that they should be homogenous enough to average their 

estimates by information weighting. P-value from the 

statistic ‘standardized’ difference between frequentist 
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estimate and prior estimate tests Compatibility of Prior 

and data. We provided an illustrating example in the 

Appendix. 

 

 

 

 

 

 

 

 

 

 

 

Other penalization approaches 

Smoothing methods using penalized likelihood as the 

examples of regularization methods are the alternative 

approaches to overcome the sparse-data issue. Although 

we do not go through the daunting discussion of these 

methods, introducing them can be useful. Imagine our 

object is to estimate the coefficient of a logistic regression 

model. The penalized likelihood function defined as, 

L∗(β) = L(β) + λ(β)  where λ(. )  is a penalty function. 

The different forms of λ provide a variety of penalization 

methods (33). Consider a penalty function as λ(β) =

λ∑|βi|
q
; For example, a quadratic form of the penalty 

function (q=2) was applied for models with the 

standardized explanatory variables. This is also referred 

to as the L2-norm method, which is analogs of ridge 

regression for linear normal-response models (33,34). 

Using the Absolute penalty function (q=1) instead of the 

quadratic form introduces the L1-norm regularization. 

This penalty method is also referred to as the LASSO in 

ordinary least squares regression. The L0-norm takes 

λ(β)  to be proportional to the number of nonzero βi , 

(q=0). Each form has the own pros and cons; for example, 

in LASSO, compare to the quadratic form, the more 

unstable coefficients may be shrunk toward 0 and thus 

eliminated from the model, so LASSO is useful when the 

goal is to reduce the dimension of the model. Its 

disadvantage is when shrinking the truly-large estimates 

toward zero, which can be highly biased (35). In these 

approaches, the degree of smoothing depends on the 

penalty parameter and the choice of which is the matter 

of bias/variance trade-off. 

 

Bayesian approach modeling 

Bayesian inference provides a powerful methodology 

to deal with the separation problem (36). Contrary to 

panelized maximum likelihood techniques, which apply 

the traditional estimating approach by adjusting the result 

through a penalty, the Bayesian method simulates a 

distribution function named posterior, which is 

proportional to the likelihood of the data and prior 

distribution. In this case, the penalized likelihood 

estimates are the posterior modes for the Bayesian 

approach using prior distributions.  In other words, a prior 

distribution on the parameters could be considered as a 

penalty. For example, posterior modes for the Bayesian 

approach using Jeffrey’s prior distribution (beta with 

parameters =0.5, =0.5) provide similar results as 

Firth's penalized estimate (38). With prior distribution 

Beta (=0.5, =0.5) and likelihood binomial (y, n), 

posterior distribution would be Beta (=y + 1, =n-y + 

2). Posterior simulation through sampling was firstly 

initiated by the Monte Carlo integration (MCI) approach; 

later, its concept was developed in the Importance of 

Sampling. Contrary to MCI on which samples are treated 

evenly, a “weight,” which shows the importance of a 

sample, is allocated to each generated sample through an 

important function. As Bayes rule, Posterior 

distribution  f(θ|y)  ∝  f(y|θ)f(θ)  in which f(y|θ)  is the 

likelihood of observed data and  f(θ)  prior distribution 

of  θ . Weighted priors can simulate the posterior 

distribution through this approach. It should be 

considered that the contribution of generated samples to 

the estimation of the posterior depends on how much it is 

supported by data. It means that the prior distribution 

should not be far from the likelihood. With the emergence 

of MCMC, posterior simulation methods entered a new 

stage and tackled most flaws of the traditional methods. 

Different classes of prior distribution could be applied in 

this case. Although the prior selection is a matter of 

conflict since the results of Bayesian analyses may be 

sensitive to its choice. Sensitivity analysis is introduced 

to overcome this issue (38). It is worth mentioning that 

DA and MCMC with the same prior information yield 

similar results. Contrary to MCMC, which has a more 

complex algorithm of analysis, DA introduces a simpler, 

more fast-running, and understandable approach (4). The 

Table 2. Firth penalization approach illustration 

A: Quasi-complete separation B: Firth penalization for  Quasi-complete separation 

10 9 10.5 9.5 

1 12 1.5 12.5 

(OR=13.3, 95%CI: 1.4 to 123.9) (OR=9.2, 95%CI: 1.29 to 66.7) 

C: Complete separation D: Firth penalization for Complete separation 

10 9 10.5 9.5 

0 12 0.5 12.5 

(OR=∞, 95%CI: Not available) (OR=27.6, 95%CI: 1.4 to 533.2) 
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normal and log-F distributions are the most common prior 

families for logistic coefficients (39). Normal priors for 

βj are symmetric, while Log-F (m, m) prior provides a 

more flexible tool, which is the natural conjugate-prior 

family for the logistic regression. It is like adding data 

with m/2 successes on m trials (4). The variance of the 

prior also has a profound influence on the background 

information it carries; prior distributions with large 

variance provide weak background information. 

 

Applied example: effect of urine iodine status during 

pregnancy on stillbirth 

In this study, data were extracted from the Tehran 

Thyroid and Pregnancy Study, a two-phase cohort study 

conducted from September 2013 through February 2016. 

Details of the study protocol have previously been 

published (40,41). The healthy pregnant women were 

divided into two groups according to the urine iodine 

concentration (UIC) status during pregnancy: UIC <150 

μg/L and UIC ≥150 μg/L (reference group), and 

pregnancy outcomes were evaluated for them. We 

analyzed stillbirth, which was subjected to sparsity in the 

levels of UIC. STATA codes are available in the 

Appendix.  

 

Table 3. Baseline characteristics in categories of the endpoint 

Outcome/Factors Still Birth 

No. Yes 

UIC Level <150 mg/dl  532 0 

=>150 mg/dl (Ref.) 494 2 

Hypertension Yes 9 0 

No. 1010 2 

Age, mean (SD)  27.2(5.3) 20.2(6.9) 

BMI, mean (SD)  24.8(4.4) 21.4(1.7) 

 

Table 4. Different classes of prior information median(95%limit) 

Priors 
Exact prior 

median OR 
95% prior limit OR 

1: Normal (ln (1), 0.5) 1 (0.25, 4) * 

2: Normal (ln (1), 1.38) 1 (0.10, 10) ** 

3: Normal (ln (2), 0.5) 2 (0.50, 8) * 

4: Normal (ln (2), 1.38) 2 (0.20, 20) ** 

5:log-F (ln (1), df1=2000, df2=2, scale parameter=1) 1.44 (0.27, 39.50) ** 

6:log-F (ln (1), df1=2000, df2=2, scale parameter=.5) 1.20 (0.52, 6.28) * 

7:log-F (ln (2), df1=2000, df2=2, scale parameter=1) 2.88 (0.54, 78.99) ** 

8:log-F (ln (2), df1=2000, df2=2, scale parameter=.5) 2.40 (1.04, 12.57) * 
*Informative priors with lower limits, **non-informative priors with wider limits 

 

 

Table 5. Results of multiple logistic regression through different approaches 

Factors/ 

Analysis 
UIC Hypertension Age BMI 

Ordinary Logistic Regression NA NA NA .68 (.36, 2.1) 
¥ DA with normal prior1 .65 (.19, 2.3), 1.0 (.26, 3.8) .74(.50, 1.1) .87 (.57, 1.3) 

¥ DA with normal prior2 .41 (.07, 2.5) 1.0 (.11, 8.6) .72 (.48, 1.1) .87 (.57, 1.3) 

¥ DA with normal prior3 1.2 (.33, 4.0) 1.3 (.80, 2.0) .76 (.52, 1.1) .86 (.57, 1.3) 
¥ DA with normal prior4 .65 (.11, 3.8) 1.2 (.60, 2.5) .74 (.49, 1.1) .87 (.57, 1.3) 
¥ DA with log-F prior5 .43 (.09, 2.0) 1.0 (.08, 12.7) .75 (.48, 1.1) .87 (.58, 1.3) 
¥ DA with log-F prior6 1.4 (.55, 3.3) 1.3 (.89, 1.8) .83 (.62, 1.1) .84 (.54, 1.3) 
¥ DA with log-F prior7 .75 (.17, 3.0) 1.2 (.59, 2.5) .74 (.49, 1.1) .87 (.57, 1.3) 
¥ DA with log-F prior8 1.4 (.55, 3.3) 1.3 (.89, 1.8) .85 (.63, 1.1) .84 (.55, 1.3) 
¥¥ Bayesian with normal prior1 .65(.19, 2.3) .99 (.19, 3.9) .74(.50, 1.1) .86 (.56, 1.3) 
¥¥Bayesian with normal prior2 .42 (.09, 2.6) 1.0 (.09, 8.8) .72 (.48, 1.1) .87 (.57, 1.3) 
¥¥Bayesian with normal prior3 1.2 (.33, 4.0) 1.0 (.80, 2.0)  .76 (.50, 1.0) .86 (.57, 1.3) 
¥¥Bayesian with normal prior4 .61 (.11, 3.2) 1.0 (.80, 2.0) .70 (.49, 1.1) .87 (.57, 1.3) 
¥ Odds Ratio (95% Profile Likelihood Confidence Interval) 
¥¥Odds Ratio (95% credible Interval) 

 

 

Results Table 3 provides a data illustration. We applied multiple 
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logistic regression through DA and Bayesian approaches 

to estimate the effect of UIC levels adjusted by 

hypertension, age, and BMI on stillbirth. Various prior 

information was selected to reflect their effects. We 

suppose that a positive but not strong association was 

expected for all covariates (42). We translated this 

background information into normal and Log-F priors for 

the log odds-ratio (Table 4). Regarding the positive 

association between exposures and stillbirth, Log-F prior 

as an asymmetric prior could better reflect the available 

background information (7,31). Results showed a 

reasonable shrink of ORs and 95%CI plausible ranges. 

Although UIC was not found significant, the risk of 

stillbirth was higher in mothers with lower UIC than 150 

mg/dl when we applied informative priors Normal (ln (2), 

0.5), log-F (ln (1), df1=2000, df2=2, scale parameter=.5) 

and log-F (ln (2), df1=2000, df2=2, scale parameter=.5), 

(Table 5). In addition, both methods provided almost the 

same result in normal priors. UIC variable was sensitive 

to the selection of prior distribution, which ranges from 

negative to positive effect while other variables were 

almost stable. Log-F prior was not supplied by the 

“bayesmh” STATA command. 
 

Discussion 
 

In this study, we reviewed sufficient statistical 

approaches to deal with the sparse data problem. 

Bayesian and DA methods as the key approaches were 

conducted in the applied example. Although the results of 

both methods were almost the same, DA was considered 

as a more tangible and easy-to-applied method, especially 

for researchers less familiar with the statistical method. It 

has the advantages of being simple and fast-running (4). 

In these methods, we seek a balance between prior 

information in the form of expert knowledge or belief and 

evidence from data. Achieving the right balance is a 

challenging issue. Actually, we need a strong enough 

prior to support weak evidence that usually comes from 

insufficient data, while non-informative prior does not 

effectively tackle the problem of separation. In this view, 

it can be valuable to have some flexibility in the location, 

scale, and shape of the prior. We thus considered two 

basic families of priors for logistic coefficients: the 

normal and the generalized Log-F distributions. We 

suppose that a positive but not strong association was 

expected for all covariates. We translated this background 

information into normal and Log-F priors for the log 

odds-ratio. Regarding the positive association between 

exposures and endpoint information, Log-F prior as an 

asymmetric prior could better reflect the available 

background information (7,39,43). 

Extremely large measures of association such as the 

odds ratio along with an extraordinarily wide range of 

confidence interval proved the traditional estimation 

methods futile in case of sparse data while it is still widely 

applying and reporting. The biased estimation provides 

misleading information inappropriate for clinical decision 

making. Bayesian and data augmentation as the advanced 

methods provide an unbiased estimation. 
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Appendix 

Data augmentation illustrating example  

Consider a hypothetical 2 by 2 contingency table 

(Appendix-Table 1), provided Ln (OR)=Ln (13) =2.6, 

Var (Ln (OR)) = 1.29, 95% CI OR= (1.4 to 123.9). 

 

 

 

 

 

 

 

 

 

 

Prior information for OR with 95% limits between 
𝟏

𝟐
 

and 2 was considered. Mean and variance of prior for Ln 

(OR) are estimated as followings; 

prior mean Ln(OR) = average of 95% limits

=
(Ln (

1
2
) + Ln(2))

2
= 0 

Appendix-Table 1. A Hypothetical 2 by 2 Contingency Table 

 Treated Non-Treated 

Diseased a=10 b=9 

Healthy c=1 d=12 

Total N1=11 N2=21 

Ln (OR)=Ln (13) =2.6, Var (Ln (OR)) = 1.29, 95% CI OR= (1.4 to 123.9) 
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prior variance Ln(OR)

= (
Width of interval in Ln(RR)units

Width of interval in standard devision units
)2

= (
|Ln (

1
2
) − Ln(2)|

2 ∗ 1.96
)2 = 0.13 

Therefore, a normal prior with mean 0 and variance 

0.13 was defined. The contribution of prior and data 

information to estimate posterior mean and variance 

could be assessed through their inverse variances 

equaling  
1

 Variance of prior
=

1

0.13
= 8.3   and 

1

 variance of LnOR
=

1

1.29
= 0.78   which showed prior 

information dominated data information by nearly 11 

times. Posterior mean and variance for Ln (OR) could be 

estimated as the following weighted averaging rule of 

thumb; Posterior mean for  ln(OR) =
Mean of  Prior

Variance of prior
+

lnOR

Variance of LnOR 
1

Variance of prior
+

1

Variance of LnOR 

=
0

0.13
+
2.6

1.29
1

0.13
+
1

1.29

=   0.24 , 

Posterior variance for ln(OR) ≈
1

 
1

Variance of prior
+

1

Variance of LnOR 

=
1

1

0.13
+
1

1.29

= 0.12 and 95% 

posterior CI for  OR ≈

exp (posterior mean ± 1.96 ∗ (Posterior variance)
1

2) = exp (0.24 ±

1.96 ∗ (0.12)
1

2) = exp(−0.44, 0.91) = (0.64, 2.48).  

The width of CI obtained from this method was 66 

times narrower than the ordinary approach. Also, the 

value of posterior mean which is closer to prior mean than 

to data showed the influence of prior as well. DA adds 

data generated from prior to the actual dataset 

automatically and then uses ordinary likelihood method 

to estimate parameters.  

The number of pseudo-data generated by Prior 

estimate, which shows the contribution of prior in 

estimating posterior, calculated as the followings; for 

simplicity we consider OR≅ 𝑅𝑅  for small sample size 

(44). Estimated  𝑅𝑅 =

𝑎

𝑁1
𝑏

𝑁2

 
𝑁1=𝑁2
⇔   

𝑎

𝑏
= 1 ⇒ 𝑎 = 𝑏 , and 

estimated variance for  𝐿𝑛(𝑅𝑅) ≈
1

𝑎
+
1

𝑏

𝑎=𝑏
⇔ 

2

𝑎
= 0.12 ⇒

𝑎 = 𝑏 ≈ 17, means that 17 observations were added to 

the exposed and non-exposed cases to estimate the 

posterior OR.  

Compatibility of the prior and data is of great 

importance, DA fails in case of incompatibility causes 

misleading results (5,31). It means that they should be 

homogenous enough to average their estimates by 

information weighting. P-value from the statistic 

‘standardized’ difference between frequentist estimate 

and prior estimate tests Compatibility of Prior and data. 

For our example, 
(𝑀𝑒𝑎𝑛𝐿𝑛𝑂𝑅−𝑀𝑒𝑎𝑛 𝑃𝑟𝑖𝑜𝑟)

(𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐿𝑛𝑂𝑅−𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑃𝑟𝑖𝑜𝑟)
1
2

=

(𝐿𝑛(13)−0)

(1.29+0.12)
1
2

= 2.16
𝑁𝑜𝑟𝑚𝑎𝑙 𝑡𝑎𝑏𝑙𝑒
⇒         𝑃𝑣𝑎𝑙𝑢𝑒 = 0.031  that 

compatibility hypothesis is rejected. 

 

Software 

Firth penalization 

STATA command “firthlogit”, SAS software 

“FIRTH option in PROC LOGISTIC” and R-Package 

“logistf” could be applied to run the Firth penalization 

analysis 

 

Data augmentation and bayesian approaches 

The “Penlogit” is a STATA command for the 

approximate Bayesian logistic regression using penalized 

likelihood estimation via data augmentation 

 

STATA software packages installation code 

ssc install penlogit 

ssc install bayesmh 

 

STATA command 

penlogit outcome_stillbirth  UI_150 hypertension 

Age BMI, lfprior( UI_150 ln(2) 2000 1 1 hypertension 

ln(2) 2000 1 1 Age ln(2) 2000 1 1) ppl(UI_150 

hypertension Age BMI) or 

penlogit outcome_stillbirth  UI_150 hypertension 

Age BMI, lfprior( UI_150 ln(2) 2000 1 .5 hypertension 

ln(2) 2000 1 .5 Age ln(2) 2000 1 .5) ppl(UI_150 

hypertension Age BMI) or 

penlogit outcome_stillbirth  UI_150 hypertension 

Age BMI, lfprior( UI_150 ln(1) 2000 1 1 hypertension 

ln(1) 2000 1 1 Age ln(1) 2000 1 1) ppl(UI_150 

hypertension Age BMI) or 

penlogit outcome_stillbirth  UI_150 hypertension 

Age BMI, lfprior( UI_150 ln(1) 2000 1 .5 hypertension 

ln(1) 2000 1 .5 Age ln(1) 2000 1 .5) ppl(UI_150 

hypertension Age BMI)  or 

penlogit outcome_stillbirth UI_150  hypertension 

Age BMI, nprior( UI_150 ln(1)  .5 hypertension ln(1)  .5 

Age ln(1) .5) ppl(UI_150 hypertension Age BMI) or 

penlogit outcome_stillbirth UI_150  hypertension 

Age BMI, nprior( UI_150 ln(1)  1.38 hypertension ln(1)  

1.38 Age ln(1) 1.38) ppl(UI_150 hypertension Age BMI) 

or 

penlogit outcome_stillbirth UI_150  hypertension 

Age BMI, nprior( UI_150 ln(2)  .5 hypertension ln(2)  .5 

Age ln(2) .5) ppl(UI_150 hypertension Age BMI) or 

penlogit outcome_stillbirth UI_150  hypertension 

Age BMI, nprior( UI_150 ln(2)  1.38 hypertension ln(2)  

1.38 Age ln(2) 1.38) ppl(UI_150 hypertension Age BMI) 

or 
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########################## 

bayesmh outcome_stillbirth UI_150 hypertension 

Age BMI, likelihood(logit) prior({UI_150}, 

normal(0,.5))prior({Age}, 

normal(0,.5))prior({hypertension}, 

normal(0,.5))prior({BMI}, normal(0,.5)) prior({_cons}, 

flat) 

bayesmh outcome_stillbirth UI_150 hypertension 

Age BMI, likelihood(logit) prior({UI_150}, 

normal(0,1.38))prior({Age}, 

normal(0,1.38))prior({hypertension}, 

normal(0,1.38))prior({BMI}, normal(0,1.38)) 

prior({_cons}, flat) 

bayesmh outcome_stillbirth UI_150 hypertension 

Age BMI, likelihood(logit) prior({UI_150}, 

normal(ln(2),.5))prior({Age}, 

normal(ln(2),.5))prior({hypertension}, 

normal(ln(2),.5))prior({BMI}, normal(ln(2),.5)) 

prior({_cons}, flat) 

bayesmh outcome_stillbirth UI_150 hypertension 

Age BMI, likelihood(logit) prior({UI_150}, 

normal(ln(2),1.38))prior({Age}, 

normal(ln(2),1.38))prior({hypertension}, 

normal(ln(2),1.38))prior({BMI}, normal(ln(2),1.38)) 

prior({_cons}, flat) 

############################ 
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