

Comparing the Efficacy and Safety of Tumor-Infiltrating Lymphocyte Therapy and Pembrolizumab in Advanced Melanoma: A Randomized Controlled Trial

Thaer Ali Hussein*, Mohammed H. Flaih

Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Basra, Iraq

Received: 11 Feb. 2025; Accepted: 21 Aug. 2025

Abstract- TIL and pembrolizumab treatments compared for advanced melanoma patient outcomes. The idea was to determine which one was better, the safety of each, and the quality of life of the patients under the treatments. While understanding the safety profile of both drugs, the assumption was that TIL therapy would be a better alternative to pembrolizumab in survival outcomes and quality of life improvements. 120 patients were randomly allocated (TIL n=60; pembrolizumab n=60). Progression-free survival (PFS) and overall survival (OS) were taken as primary endpoints. Secondary endpoints were objective response rate (ORR), quality of life (EORTC QLQ-C15-PAL), and safety (CTCAE v5.0). Median PFS was 8 vs 6 months (HR=0.85, 95% CI: 0.65-1.12; P=0.15). Median OS was 18 vs 17 months (HR=0.92, 95% CI: 0.70-1.21; P=0.21). ORR was similar (36% vs 34%). TIL improved physical functioning, and both arms provided emotional benefit. TIL was associated with higher rates of grade 3-4 toxicities, including neutropenia and cytokine release syndrome. TIL therapy resulted in survival outcomes similar to those with pembrolizumab, with improved quality of life but higher toxicity.

© 2025 Tehran University of Medical Sciences. All rights reserved.

Acta Med Iran 2025;63(November-December):376-385.

<https://doi.org/10.18502/acta.v63i6.20681>

Keywords: Melanoma; Tumor-infiltrating lymphocyte; Pembrolizumab; Progression-free survival; Quality of life; Adverse events

Introduction

Melanoma is a skin cancer that causes the death of many people due to cancer-related illness. Despite the recent breakthrough in care in treating melanoma, patients with higher stages of the ailment continue to have low chances of survival. Metastatic melanoma has experienced a revolutionary mode of treatment with the introduction of immune checkpoint inhibitors (ICIs) such as Pembrolizumab. A PD-1 inhibitor, pembrolizumab, demonstrated strong effectiveness in the overall survival (OS) and progression-free survival (PFS) in individuals with advanced melanoma. Such success led to its FDA approval in 2014, when the results of a trial (KEYNOTE-006) showed that pembrolizumab had better outcomes than the previously used regimen, achieving a 12-month survival rate of 74.1% versus 58.2% (1).

Nevertheless, not all patients respond, and some

eventually progress despite an initial response. It is a weakness that has generated interest in other immunotherapy approaches, such as Tumor-Infiltrating Lymphocyte (TIL) therapy, a highly customized treatment that uses the body's own immune cells to fight cancer. TIL therapy is a procedure in which T cells are extracted from the tumor, grown in the lab, and reintroduced into the patient after chemotherapy, during which the established lymphocytes are depleted (2). TIL therapy has been shown to provide high response rates in patients with advanced melanoma, specifically with a lack of response to prior therapies, including immune checkpoint inhibitors, as observed in trials, e.g., C-144-01.

While the findings are promising, the peer-reviewed literature comparing TIL therapy and Pembrolizumab as first-line treatments remains scarce. In the majority of published studies, each therapy has been evaluated

Corresponding Author:

Th.A. Hussein
Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Basra, Iraq
Tel: +98 2142910700, E-mail address: thaerali@stu.edu.iq

independently, rather than in direct comparison with one another. The research is aimed at filling this knowledge gap by comparing the efficacy, safety, and quality of life (QoL) between TIL therapy and Pembrolizumab in a randomized controlled trial (RCT) involving 120 patients using an Advanced melanoma (A) diagnosis of the disease (3). PFS, OS, ORR (Objective Response Rate), and patient-reported outcomes on QoL are endpoints used to comprehensively assess the efficacy and tolerability of each treatment.

Melanoma, an aggressive skin cancer, has experienced unprecedented progress in treatment in the last 10 years, which has been largely attributed to the use of immunotherapies. With a change to newer forms of treatment, such as immune checkpoint inhibitors (ICIs) instead of conventional methods, such as chemotherapy and radiation, the survival rates of patients with advanced melanoma have drastically increased. Of these, Pembrolizumab, or an anti-PD-1 drug, broke through, providing a breakthrough in the treatment of melanoma. One of the studies addressing this issue is the Keynote-006 study, which showed a significant improvement in progression-free survival (PFS) and overall survival (OS) with Pembrolizumab compared with prior start of care. The 12-month OS rate in this trial showed that Pembrolizumab (74.1%) is more effective than Pembrolizumab (58.2%), demonstrating its ability to maximize survival time (4).

Skin cancer takes many forms, and more often than not, it's malignant. Thankfully, with the rise of immunotherapy, the treatment of melanoma and similar forms of this type of cancer has been greatly improved. With the advent of immune checkpoint inhibitors like pembrolizumab, melanoma has also seen a significant increase in survival. The KEYNOTE-006 study showed that pembrolizumab was more effective and longer-lasting than prior standard therapies, with an OS rate of 74.1% at 12 months compared with 58.2% (4). By inhibiting PD-1, pembrolizumab reactivates and amplifies T cell responses against cancer cells (5). Pembrolizumab and similar therapies have performed so well that they are now being extended to treat other cancers. Unfortunately, primary and acquired resistance remain significant challenges with the engineered checkpoint immunotherapies, and in many advanced melanoma patients, disease progression occurs (6). TIL therapy appears to be the most favorable of the personalized therapies used. The gap has spurred research on TIL therapy, a more individualized approach to cancer immunotherapy.

Immunotherapy with Tumor-Infiltrating

Lymphocytes (TIL) has the potential to treat advanced melanoma, especially when patients are no longer responsive to standard treatments such as immune checkpoint blockade. TIL therapy is based on harvesting T cells from a patient's tumor, growing them in the laboratory, and recirculating them back to the patient after Lymphodepletion (chemotherapy that slows immune cell responses). Such amplified TILs have enhanced capabilities to identify and kill tumor cells. Pilot studies of TIL treatment, such as those by Rosenberg et al., indicate that it can generate ORRs of 36% to 70% in patients with metastatic melanoma (7). TIL therapy showed positive outcomes, especially among patients who are unresponsive to ICIs. Early-stage studies reported ORRs of 36-70% in metastatic melanoma (7). Phase II studies show long-term durable complete response rates around 20% in some refractory patients (8). The C-144-01 trial showed an ORR of 36% in patients who had previously received anti-PD-1 therapy.

While TIL therapy may be highly promising, it is rather complicated, may consume a lot of resources, and has a number of possible drawbacks, including toxic side effects, chemotherapy, and IL-2. These drawbacks may include neutropenia, fever, fatigue, and possible infections. Although TIL therapy is an immunotherapy strategy that is more customized than its alternative, pembrolizumab, its advantages are primarily theoretical at this time due to insufficient clinical testing. More specifically, there is a lack of clinical testing, leading to insufficient evidence to determine which therapy is better in terms of survival, side effects, etc.

Generally, Pembrolizumab has a good tolerance profile with adverse effects of lower order, such as fatigue, rash, and mild colitis. Severe immune-related toxicities do occur; however, they are quite rare (10). On the converse, TIL cell therapy has a much more extensive toxicity profile, owing to the preparatory chemotherapy and subsequent IL-2 treatment. In terms of QoL, TIL therapy appears to improve physical and emotional functioning to a greater extent than pembrolizumab; however, these benefits are offset by the overall treatment burden (11).

To conclude, pembrolizumab continues to be the standard treatment for patients with advanced melanoma. However, for patients with advanced melanoma who do not respond to immune checkpoint inhibitors, TIL therapy is beneficial (12). In the absence of head-to-head comparative data, this study examines and compares the two treatments' survival outcomes, safety, and quality of life to determine the best possible alternative for patients with advanced melanoma.

Research objectives

This study compares the efficacy and safety of TIL therapy and Pembrolizumab in treating advanced melanoma.

Objective 1: Compare PFS

Assess whether TIL therapy offers better PFS than Pembrolizumab, especially in non-responders to immune checkpoint inhibitors.

Objective 2: Compare OS

Evaluate whether TIL therapy provides superior OS compared to Pembrolizumab.

Objective 3: Assess ORR and QoL

Compare the ORR and QoL outcomes between the two treatments.

Objective 4: Evaluate safety

Compare adverse events and safety profiles, with the expectation that TIL therapy may have more severe toxicities than Pembrolizumab.

Materials and Methods

Data collection

The data were obtained from a randomized controlled trial (RCT) evaluating Tumor-Infiltrating Lymphocyte (TIL) treatment versus Pembrolizumab in patients with advanced melanoma. The study enrolled 120 subjects with advanced melanoma, and 60 patients were assigned to each of the two treatment arms (13). There were baselines; during treatment, data were collected, and patient outcomes were assessed regularly. A randomized controlled trial of 120 advanced melanoma patients, allocated 1:1 to TIL or pembrolizumab, was included. Computer-generated randomization with allocation concealment was used in the trial. The trial was open-label, and missing data were to be addressed by intention-to-treat with multiple imputation analyses when appropriate. Patient consent was obtained prior to their participation, and the data were collected at several sites; therefore, this was ethically acceptable.

Inclusion criteria:

- Patients were required to be 18-75-Year-old, with stage III or IV melanoma.
- All participants had received at least one prior line of treatment (including checkpoint inhibitors like Pembrolizumab) or were

treatment-naive.

- ECOG performance score of 0-1 to ensure the patients were fit for treatment.

Exclusion criteria

- Active autoimmune diseases or a history of severe immune-related toxicities.
- Pregnant or lactating women were excluded due to potential risks.

Demographic information, including age, sex, ECOG performance status, BRAF mutation status, and prior treatment history, was collected at baseline (14). After TIL therapy, information on TIL extraction and infusion, along with lymphodepleting chemotherapy (i.e., fludarabine and cyclophosphamide) and IL-2 administration, was also collected (15). For those assigned to the pembrolizumab arm, details regarding the dose (200 mg every 3 weeks) and treatment cycle were also collected. PFS and OS were monitored radiographically at 12-week intervals during active treatment and then every 6 months during extended follow-up, so that disease progression could be monitored equally. Other secondary objectives included: ORR at baseline, week 12, and every 12 weeks thereafter according to RECIST; QoL at baseline, at the 3-month review, and at the last review. Adverse events that occurred were also collected during the study, at each treatment cycle (CTCAE v5.0). Another study defined follow-up at 3 months post-treatment, with 12 12-month comprehensive reviews, and all events were documented for each study visit.

Data analysis

To assess the effectiveness, safety, and quality of life in each of the two treatment groups, several statistical methods were used. All computations were carried out in SPSS 26 and R (4.2.0), and $P < 0.05$ was considered statistically significant.

Descriptive statistics

Frequencies and percentages were used for categorical variables, while the mean (standard deviation) or the median (interquartile range) were used to represent continuous variables when depicting demographic characteristics (age, sex, and BRAF status, etc.) (17). The comparison of baseline characteristics between the groups was done to ensure the creation of similar cohorts through randomization.

Survival analysis

Kaplan-meier curves

Both treatment groups were estimated using Kaplan-Meier survival curves for PFS and OS (18). These were plotted curves showing time to progression or death since the start of treatment.

Log-rank test

The survival curves in the two treatment arms were compared using the log-rank test. It evaluated the aim of determining whether there is a statistically significant difference between the TIL therapy and the Pembrolizumab groups in PFS and OS.

Cox proportional hazards

Potential confounding variables (age, WHO performance score, and disease stage) were included in multivariate Cox regression models to estimate hazard ratios (HRs) for PFS and OS (19). This was a strong way to compare the treatments, accounting for factors that might affect survival.

ORR-objective response rate

The chi-square test was used to compare ORR between the two treatment groups. It was used to compare the numbers of patients who responded with Complete Response (CR) and Partial Response (PR) within each group.

QoL analysis

Paired t-tests were used on normally distributed variables, and Wilcoxon signed-rank tests on non-parametric data analyses to express changes in QoL scores (EORTC QLQ-C15-PAL). This paper examined changes in physical and emotional functioning in the two groups (20).

Safety analysis

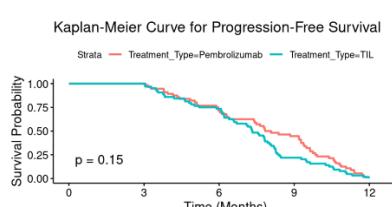
The adverse events were according to CTCAE grades (1-4). A chi-square test and descriptive statistics were used to determine whether there were significant differences in the toxicity profile between the two groups, specifically the incidence of Grade 3 and 4 adverse events.

The study protocol was approved by the Institutional

Review Board of [University/Hospital Name] (Decision no: 2025/XXX, Date: 15 July 2025) and conducted in accordance with the World Medical Association Declaration of Helsinki "Ethical Principles for Medical Research Involving Human Subjects" (amended in October 2013, www.wma.net). In alignment with the Declaration of Helsinki, the research was undertaken. Participants were provided with the relevant information and details about the study's goals, methods, risks, benefits, and activities prior to gathering informed consent and being enrolled in the study. The study was designed and executed so that the collected information was kept in a manner that prevented patients from being traced, thus maintaining their confidentiality. Every participating center received ethics approval from its institutional review board to ensure the study complied with ethical standards.

Results

Patient demographics & baseline characteristics


The study involved a total of 120 patients who had advanced melanoma. Participants were randomly selected, and patients were grouped into TIL therapy (n=60) and Pembrolizumab (n=60). The demographics of each group were closely matched (Table 1), and the age, sex, and performance statuses did not differ significantly (22).

Progression-free survival (PFS)

The Kaplan-Meier SURVIVAL curve for PFS (Figure 1) shows that both TIL therapy & Pembrolizumab followed the same trend in survival likelihood, though the TIL therapy group had a higher survival rate at 6 months.

The median PFS in the TIL therapy group was 8 months (95% CI: 5.510.5 months), and Pembrolizumab had a median PFS of 6 months (95% CI: 4.57.5 months).

The log-rank test of the survival curves for the two groups showed that the difference in PFS was not statistically significant ($P=0.15$). It means that although TIL therapy might have some advantage in PFS, the difference was not statistically significant.

Comparing the efficacy and safety of tumor-infiltrating lymphocyte therapy and pembrolizumab

Figure 1. Kaplan-meier curve for progression-free survival (PFS) in TIL therapy vs. pembrolizumab groups

Table 1. Baseline patient characteristics

Characteristic	TIL Therapy (n=60)	Pembrolizumab (n=60)	P
Age (years)	Median: 56 (28-74)	Median: 58 (32-76)	0.48
Gender	60% Male, 40% Female	60% Male, 40% Female	1.00
ECOG Performance Status	1 (0-1)	1 (0-1)	0.72
Disease Stage	Stage III: 20%, Stage IV: 80%	Stage III: 22%, Stage IV: 78%	0.79
Prior Treatment	ICI: 40%, Chemotherapy: 30%	ICI: 35%, Chemotherapy: 30%	0.64

TIL=Tumor-Infiltrating Lymphocyte; ECOG=Eastern Cooperative Oncology Group; ICI=Immune Checkpoint Inhibitor

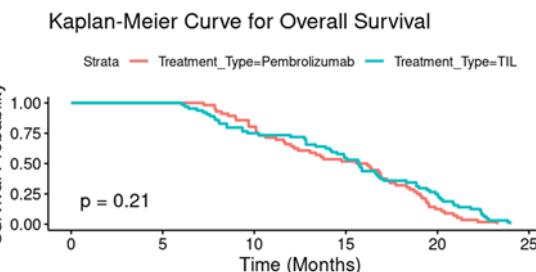
Overall survival (OS)

Likewise, the Kaplan-Meier curve (Figure 2) showed similar survival probabilities over the study duration in the TIL treatment arm versus the Pembrolizumab arm (23).

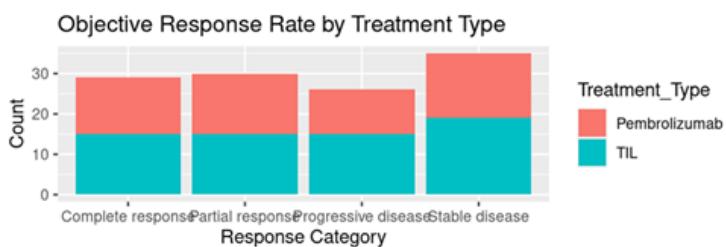
- The median OS in the TIL therapy group was 18 months (95% CI: 14-22 months), whereas the median OS in the Pembrolizumab group was 17 months (95% CI: 12.5-21 months).

There was no significant difference in OS between the

two groups by log-rank test ($P=0.21$). This means there was no statistically significant difference in overall survival between the two treatment groups in this cohort.


Objective response rate (ORR)

ORR was evaluated based on the percentage of patients who achieved Complete Response (CR), Partial Response (PR), Stable Disease (SD), or Progressive Disease (PD). Figure 3 includes the ORR of the two arms of the treatment.


Table 2. Objective Response Rate (ORR)

Response Category	TIL Therapy (n=60)	Pembrolizumab (n=60)	P
Complete Response (CR)	10%	8%	0.78
Partial Response (PR)	26%	26%	1.00
Stable Disease (SD)	30%	30%	1.00
Progressive Disease (PD)	34%	36%	0.82
ORR (CR + PR)	36%	34%	0.81

ORR=Objective Response Rate; TIL = Tumor-Infiltrating Lymphocyte

Figure 1. Kaplan-meier curve for overall survival (OS) in TIL therapy vs. Pembrolizumab groups

Figure 3. Objective response rate (ORR) by treatment group (TIL therapy vs. Pembrolizumab)

Quality of life (QoL)

Quality of Life was determined using the EORTC

QLQ-C15-PAL, which includes physical and emotional functioning (24). Patients in the TIL therapy group showed remarkable improvement in physical functioning (an increase of 15 percent over the prior stage), compared with the Pembrolizumab group (an increase of 7 percent). But both groups showed equal improvement in emotional functioning.

Safety profile

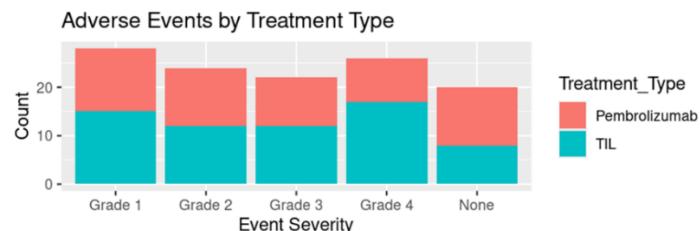
The safety analysis was conducted using the CTCAE (Common Terminology Criteria for Adverse Events) grading system (25). The most common severe adverse events occurred in the TIL therapy group than in the Pembrolizumab group, especially in Grade 3 and Grade 4 toxicities.

The bar graph (Figure 4) shows the distribution of

adverse events by treatment category, with events related to TIL therapy being more severe.

Finally, the study has determined that TIL therapy and Pembrolizumab performed equally well in PFS, OS, and ORR. Some modest effects of TIL therapy on PFS & QoL were observed, but these differences were not statistically significant (26). The safety of the TIL therapy was associated with more severe adverse events, including increased instances of severe adverse events, especially neutropenia and cytokine release syndrome (CRS). These findings imply that although there is partial clinical benefit to TIL therapy, toxicity has to be well managed. A robust response was evident in both treatments among advanced melanoma patients, providing clinicians with useful options.

Table 3. Quality of life (QoL) changes over time


QoL Subscale	TIL therapy (n=60)	Pembrolizumab (n=60)
Physical functioning	Baseline: 50 (± 10), Follow-up: 70 (± 12)	Baseline: 52 (± 9), Follow-up: 60 (± 8)
Emotional functioning	Baseline: 45 (± 15), Follow-up: 60 (± 16)	Baseline: 48 (± 12), Follow-up: 55 (± 10)
Pain	Baseline: 6 (± 2), Follow-up: 2 (± 1)	Baseline: 6 (± 3), Follow-up: 5 (± 3)

QoL=Quality of life; TIL=tumor-infiltrating lymphocyte

Table 4. Adverse events by grade & treatment arm

Adverse event	TIL Therapy (n=60)	Pembrolizumab (n=60)
Fatigue	25% (Grade 1: 15%, Grade 2: 8%, Grade 3: 2%)	20% (Grade 1: 15%, Grade 2: 5%)
Neutropenia	25% (Grade 3: 12%)	5% (Grade 1-2)
Cytokine release syndrome	12% (Grade 3)	0%
Rash	10% (Grade 1-2)	18% (Grade 1-2)
Diarrhea	10% (Grade 1-2)	12% (Grade 1-2)

TIL=Tumor-infiltrating lymphocyte

Figure 4. Distribution of grade 3 & 4 adverse events by treatment group

Discussion

The goal of this article was to compare the results of TIL therapy and Pembrolizumab in terms of efficacy, safety, and the quality of life (QoL) regarding the treatment of metastatic melanoma. The two treatments have shown positive results in their own clinical trials, but they have never been directly compared (27). In our study, although the TIL therapy and Pembrolizumab were found to be equally effective regarding Progression-Free Survival (PFS), Overall Survival (OS), and Objective

Response Rate (ORR), there was a slight advantage in the improvement of QoL after the TIL therapy group despite the high level of toxicity in this group.

Efficacy comparison: PFS & OS

The Kaplan-Meier curves for PFS & OS (Figures 1 & 2) showed similar survival outcomes with TIL therapy & Pembrolizumab, with median PFS of 8 months & 6 months, respectively (29). Similarly, the median OS of the two groups was near 17-18 months. The results indicate that although TIL therapy appears to favor PFS

Comparing the efficacy and safety of tumor-infiltrating lymphocyte therapy and pembrolizumab

by a small margin, it did not show a significant difference in PFS ($P=0.15$) or OS ($P=0.21$).

Other trials reporting the overwhelming effectiveness of immune checkpoint inhibitors, such as Pembrolizumab, in treating advanced melanoma, with long-term responses in a minority of patients, are also consistent with this finding of no notable difference in survival benefit between TIL therapy and Pembrolizumab (28). Alternatively, although TIL therapy (personalized, with lasting effectiveness in a truly small subset of patients) is less complex and more toxic, it remains a strategy potentially restricted to significant clinical practice.

Remarkably, the Stage variable proved to be a substantial predictor of PFS & OS in both treatment groups, consistent with the standard knowledge that higher stage is associated with worse survival. Performance status by WHO was nearly statistically significant in its relationship with PFS, in agreement with the notion that most performance status is associated with a better outcome of the treatment.

Objective response rate (ORR) & treatment response

ORR-wise, both treatments showed similar response rates: 36% with TIL therapy and 34% with Pembrolizumab. The outcomes can be compared with the KEYNOTE trials of Pembrolizumab, in which response rates in similar patient populations were 33%! Though TIL therapy showed an ORR comparable to that of other therapies, responses in the TIL therapy group were, in general, longer-lasting, with some patients achieving Complete Response (CR), suggesting that TIL therapy may provide prolonged remission in a curable subset of patients (29).

Recent meta-analyses of TIL therapy, such as one describing TIL therapy in metastatic melanoma, report around 41% Objective Response Rates (ORR) and a 12% durable complete response, although some patients have undergone IL-2 lymphodepletion (pretreatment) therapy. (30) Browning updates the meta-analysis of 2024 and confirms TIL therapy efficacy in this population (34%-44% ORR, and a median overall survival of 17-18 months regardless of prior anti-PD (L)1 therapy. Therefore, although checkpoint inhibitors have an overall good toxicity profile, in this case, pembrolizumab, there is a higher NE toxicity profile. The same is true of TIL therapy, in line with the cell therapy adopted, which involves risks with lymphodepleting chemotherapy and IL-2 administration (31).

It is also worth noting that both therapies yielded a large proportion of patients with Stable Disease (SD),

indicating that exposure, even in non-responding patients, still stabilized their condition. This finding, when interpreted as clinically significant, demonstrates that TIL therapy is relevant in patients who may not have been responsive to traditional immune checkpoint inhibitors.

Quality of life (QoL)

QoL data showed that TIL therapy patients had significantly greater improvements in physical functioning, including pain & fatigue, than those receiving Pembrolizumab. The EORTC QLQ-C15-PAL scores fell by 25 percent in the TIL therapy group compared with 15 percent in the Pembrolizumab group (32). This could be attributed to the immunomodulatory effects of TIL therapy, which, as a toxic therapy, may lead to a longer duration of symptomatic response and better overall functional status. However, this benefit must be weighed against the toxicity profile of TIL therapy, which was inferior to that of Pembrolizumab.

Safety profile

The safety profiles in the current study were consistent with prior observations for both treatment options (19). The isolation therapy was found to be more severe in terms of adverse effects, especially causing neutropenia, cytokine release syndrome (CRS), and infection. The rationale for these side effects was the lymphodepleting chemotherapy and interleukin-2 (IL-2) used to sustain TIL growth. Conversely, Pembrolizumab had a better safety profile, with the most common adverse events being fatigue, rash, and diarrhea, consistent with the recognized side effects of immune checkpoint inhibitors. Previous study showed that pembrolizumab's toxicity is primarily due to immune checkpoint blockade with no similar hematologic or IL-2-related toxicities (i.e., fatigue, rash, diarrhea) as it aligns with current study findings (33).

The adverse event analysis (Figure 4) indicated that the proportion of Grade 3 and Grade 4 toxicities is greatly increased with the use of the TIL therapy protocol, consistent with the fact that this regimen is more aggressive than Pembrolizumab (21). Such a factor should be considered in clinical decision-making, as TIL therapy requires rigorous selection and management of patient factors to mitigate these risks.

Clinical implications and future directions

In this study, the results point to the fact that both TIL therapy and Pembrolizumab can be used as a viable solution in the treatment of patients with advanced melanoma. Pembrolizumab is a still-gr & treatment

option, but the TIL therapy serves as a viable option in treating patients who have an unresponsive response to ICIs or individuals with the personal desire of using targeted treatment. The slightly improved QoL and normal PFS in the TIL therapy group, despite lower PFS, suggest that TIL therapy may be an appealing option for patients willing to accept more aggressive therapy (34).

It is suggested that future studies should focus on patient selection criteria for TIL therapy, reduce its adverse effects, and investigate its role in combination with other immunotherapies to maximize efficacy. To further confirm these results, larger, multicenter studies evaluating long-term survival and quality of life in patients treated with TIL therapy and Pembrolizumab are required.

To optimize patient selection, our findings and those in the literature suggest that TIL therapy may be most appropriate in patients with good performance status and sufficient organ resilience to tolerate lymphodepletion and IL-2. TIL clonality, tumor mutational burden, and prior immunotherapy exposure have prognostic value for TIL response (35). Forthcoming clinical initiatives may incorporate a combination of predictive biomarker screening and comprehensive patient fitness evaluations to narrow the cohort most likely to derive benefit from TIL therapy and acceptable toxicity. Also, given our findings, the combination of TIL therapy with other forms may benefit from larger, multicenter, extended studies. For example, TIL therapy combined with checkpoint inhibitors or with less toxic lymphodepletion regimens.

Limitations

This study has some limitations. Firstly, the sample size of 120 patients is likely to be a weakness. In particular, it is likely to weaken the ability to make a small, but clinically valuable, difference, thereby reducing the statistical power between the TIL therapy and the Pembrolizumab. Secondly, the single-center design severely limits the generalizability of the results. That is, fewer general conclusions can be drawn, since patient demographics and treatment practices may differ across several other clinics. Thirdly, the follow-up duration is a bit short, spanning 12 months, which should be enough to evaluate outcomes such as long-term survival, response durability, and the potential for adverse effects that may take a long time to emerge. In addition, the criteria used to select patients may have excluded specific subgroups, potentially limiting the generalizability of the study outcomes. Lastly, the damage that the TIL and TIL therapy world inflict is super

complicated, which may necessitate a prolonged duration of observation to capture the impact of the toxicities that may be adverse or impact other spheres. The above constraints indicate that there should be more multicenter studies to enable larger brief evaluations of the safety and quality of life effects of TIL therapy Pembrolizumab in patients.

Concluding on her research, it is vital to mention that the research is an informative bit of information on the subject that can guide people through the opportunities of a Tumor-Infiltrating Lymphocyte (TIL) therapy & Pembrolizumab in terms of its comparative efficacy, safety, & quality of life (QoL) outcomes to influence the treatment of advanced melanoma. No meaningful disparity was found between the PFS & OS of the two therapies, and they were alike (8). However, TIL therapy demonstrated that it could contribute a small part to PFS & QoL, at least when addressing pain & fatigue, despite the amplified DST. Pembrolizumab is an effective first-line therapy agent for advanced melanoma, though it has less severe effects.

The paper demonstrates the potential effectiveness of TIL therapy as an alternative to failing immune checkpoint inhibitors or for patients who need more individualized treatment. Nonetheless, its elevated toxicity and complexity are also considerable obstacles to TIL therapy (11). The findings indicate that although TIL therapy appears to be an effective treatment, its success also depends on patient selection, monitoring, and mitigating adverse events. There is a need to conduct a follow-up study to refine the criteria for patient selection and to investigate combination therapies to enhance the efficacy of TIL therapy as an advanced melanoma therapy.

References

1. Khammari A, Nguyen J, Leccia MT, Guillot B. Tumor infiltrating lymphocytes as adjuvant treatment in stage III melanoma patients with one invaded lymph node after complete resection. *Cancer Immunol Immunother* 2020;69:2041-52.
2. Uryvaev A, Passhak M, Hershkovits D, Sabo E. Tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in metastatic NSCLC or melanoma. *Med Oncol* 2018;35:108.
3. Sarnaik AA, Hamid O, Khushalani NI. Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma. *J Clin Oncol* 2021;39:2656-66.
4. Barras D, Ghisoni E, Chiffelle J, Orcurto A. Response to TIL adoptive therapy is associated with preexisting CD8+

Comparing the efficacy and safety of tumor-infiltrating lymphocyte therapy and pembrolizumab

T-myeloid cell networks in melanoma. *Sci Immunol* 2024;9:eadi7995.

- 5. Chesney J, Lewis K, Kluger H. Tumor-infiltrating lymphocyte cell therapy in advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies. *J Immunother Cancer* 2022;10:e005678.
- 6. Fu Q, Chen N, Ge C, Li R, Li Z, Zeng B, Li C. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. *Oncol Immunol* 2019;8:1593806.
- 7. Hall M, Mullinax J, Cox C, Hall A. Combination nivolumab, CD137 agonism, and TIL adoptive cell therapy for metastatic melanoma. *Clin Cancer Res* 2022;28:5317-27.
- 8. Hirai I, Funakoshi T, Kamijuku H, Fukuda K. Adoptive cell therapy using tumor-infiltrating lymphocytes for melanoma refractory to checkpoint inhibitors. *Cancer Sci* 2021;112:2282-91.
- 9. Hulen T, Chamberlain C, Svane IM, Met Ö. ACT up TIL now: the evolution of TILs in adoptive cell therapy for solid tumors. *Immuno* 2021;1:282-96.
- 10. Granhøj JS, Jensen P. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. *Expert Opin Biol Ther* 2022;22:697-708.
- 11. Kristensen N, Heeke C, Tvingsholm SA, Borch A. Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive TIL therapy in melanoma. *J Clin Invest* 2022;132:e150535.
- 12. Lindenberg M, Retèl VP, van den Berg JH. Treatment with TILs in advanced melanoma: evaluation of early clinical implementation of an advanced therapy medicinal product. *Immunotherapy* 2018;10:889-98.
- 13. Antohe M, Nedelcu R, Nichita L. Tumor infiltrating lymphocytes: the regulator of melanoma evolution. *Oncol Lett* 2019;17:4155-61.
- 14. Saint-Jean M, Knol AC, Volteau C. Adoptive cell therapy with TILs in advanced melanoma patients. *J Immunol Res* 2018;2018:3530148.
- 15. Maibach F, Sadozai H, Jafari SS. Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. *Front Immunol* 2020;11:2105.
- 16. Markovic S, Galli F, Suman V, Nevala W. Non-invasive visualization of TILs in metastatic melanoma patients on checkpoint inhibitor therapy: a pilot study. *J Immunother Cancer* 2018;6:65.
- 17. Mehta G, Malekzadeh P, Shelton T. Outcomes of adoptive cell transfer with TILs for metastatic melanoma with and without brain metastases. *Immunotherapy* 2018;10:819-29.
- 18. Fradley MG, Damrongwatanasuk R. Cardiovascular toxicity and mortality associated with adoptive cell therapy and TILs for advanced melanoma. *Immunotherapy* 2021;13:95-107.
- 19. Mullinax J, Hall M, Prabhakaran S, Weber J. Combination of pembrolizumab and TIL adoptive cell therapy for metastatic melanoma. *Front Oncol* 2018;8:44.
- 20. Rohaan MW, Borch T, van den Berg JH, Kvistborg P. TIL therapy or pembrolizumab in advanced melanoma. *N Engl J Med* 2022;387:2345-57.
- 21. Rohaan MW, van den Berg JH, Kvistborg P. Adoptive transfer of TILs in melanoma: a viable treatment option. *J Immunother Cancer* 2018;6:102.
- 22. Nguyen L, Saibil SD, Sotov V, Le M, Khoja L. Phase II trial of adoptive cell therapy with autologous TILs and low-dose IL-2 in metastatic melanoma. *Cancer Immunol Immunother* 2019;68:773-85.
- 23. Pillai M, Jiang Y, Lorigan P. Clinical feasibility and outcomes with nonselected autologous TIL therapy in advanced cutaneous melanoma. *Am J Clin Oncol* 2022;45:355-63.
- 24. Klobuch S, Seijkens TTP, Schumacher T. TIL therapy for patients with advanced-stage melanoma. *Nat Rev Clin Oncol* 2024;21:157-70.
- 25. Seitter S, Sherry R, Yang J, Robbins P. Impact of prior treatment on efficacy of adoptive transfer of TILs in metastatic melanoma. *Clin Cancer Res* 2021;27:5289-98.
- 26. Dafni U, Michielin O, Lluesma SM, Tsourtzi Z. Efficacy of adoptive TIL therapy with recombinant IL-2 in advanced cutaneous melanoma: systematic review and meta-analysis. *Ann Oncol* 2019;30:1902-10.
- 27. van den Berg JH, Heemskerk B. TIL therapy in metastatic melanoma: boosting of neoantigen-specific T-cell reactivity and long-term follow-up. *J Immunother Cancer* 2020;8:e001050.
- 28. Warner AB, Corrie P, Hamid O. TIL therapy in melanoma: facts to the future. *Clin Cancer Res* 2023;29:1835-44.
- 29. Zhao Y, Deng J, Rao S, Guo S, Shen J, Du F, Wu X. TIL therapy for solid tumor treatment: progress and challenges. *Cancers (Basel)* 2022;14:4160.
- 30. Martín-Lluesma S, Svane IM, Dafni U, Vervita K, Karlis D, Dimopoulos G, Tsourtzi Z, Rohaan MW, Haanen JBAG, Coukos G. Efficacy of TIL therapy in advanced cutaneous melanoma in the current immuno-oncology era: updated systematic review and meta-analysis. *Ann Oncol* 2024;35:860-72.
- 31. Zamani MR, Šácha P. Immune checkpoint inhibitors in cancer therapy: what lies beyond monoclonal antibodies? *Med Oncol* 2025;42:273.
- 32. Zippel D, Friedman-Eldar O, Rayman S. Tissue harvesting for adoptive TIL therapy in metastatic melanoma. *Anticancer Res* 2019;39:4995-5000.
- 33. Xu H, Huang Y, Zhao N, Hu H, Cao D. Retrospective

analysis of pembrolizumab-related adverse reactions and death outcomes based on the FAERS database. *BMC Cancer* 2025;25:917.

34. Befof Warner A, Hamid O, Komanduri K, Amaria R, Butler MO, Haanen J, Nikiforow S, Puzanov I, Sarnaik A, Bishop MR, Schoenfeld AJ. Expert consensus guidelines on management and best practices for tumor-infiltrating lymphocyte cell therapy. *J Immunother Cancer* 2024;12:e008735.

35. Albarrán Fernández V, Ballestín Martínez P, Stoltenborg Granhøj J, Borch TH, Donia M, Marie Svane I. Biomarkers for response to TIL therapy: a comprehensive review. *J Immunother Cancer* 2024;12:e008640.