

Examining the Frequency of Complications of Vaginal Birth After Cesarean Delivery in Postpartum Time: A Retrospective Case-Series

Mahshid Shooshtari¹, Shohre Movahedi¹, Shima Tavakkolian², Ghazal Roshanzadeh^{3,4}, Zahra Ghalenoei^{1*}

¹ Department of Obstetrics and Gynecology, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran

² Department of Obstetrics and Gynecology, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran

³ Clinical Research Development Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran

⁴ Department of Midwifery and Reproductive Health, Tehran University of Medical Sciences, Tehran, Iran

Received: 11 Jan. 2025; Accepted: 24 Oct. 2025

Abstract- This study investigates the complications associated with unplanned vaginal birth after cesarean delivery (VBAC) among women in Sistan-Balochistan province, who often delay hospital visits until labor is imminent due to concerns about clinician acceptance. A retrospective case-series study was conducted at Khash and Baharloo hospitals from September 2021 to October 2022. Data on all VBAC deliveries were collected from hospital records with informed consent. Maternal demographics, delivery profiles, and complications were analyzed using SPSS 22 software. The study investigated the safety and complications associated with vaginal birth after cesarean (VBAC) among 120 women, ultimately analyzing data from 114 participants after excluding those who underwent cesarean delivery due to failed trial of labor after cesarean (TOLAC). Out of 114 women who achieved VBAC, there were no maternal deaths. Complications included 5 (4.3%) uterine ruptures and 2 (1.7%) cases of endometritis. Four neonates had an Apgar score < 7 at five minutes, including one intrauterine fetal death (IUFD). Understanding the complications associated with VBAC is essential for developing localized guidelines tailored to individual patient needs.

© 2025 Tehran University of Medical Sciences. All rights reserved.

Acta Med Iran 2025;63(November-December):371-375.

<https://doi.org/10.18502/acta.v63i6.20680>

Keywords: Vaginal birth after cesarean (VBAC); Trial of labor after cesarean

Introduction

Cesarean section (C/S) has become increasingly common worldwide, exposing both mothers and fetuses to early and long-term complications in subsequent pregnancies. Notably, C/S can significantly affect the course and outcomes of future pregnancies. This increases the risk for conditions such as placenta accreta spectrum disorder (1-6). Since 1985, there has been no evidence indicating that the rising rates of C/S correlate with a decrease in maternal or fetal mortality. Consequently, the World Health Organization (WHO) recommends that the rate of C/S should not exceed 10-15% in any region globally (7). According to WHO, in 2015, the cesarean section rate among Robson group 5 (women with a previous cesarean) ranged from 63.2% to

72.1% in low-income countries, 85.2% to 87.5% in middle-income countries, and 78.1% to 79.4% in high-income countries (8). Counseling women with a history of cesarean delivery is often debated in obstetric practice. The rate of vaginal birth after cesarean (VBAC) is declining globally, while cesarean sections are on the rise, with repeat cesarean deliveries being the primary factor contributing to this increase (9-11). Furthermore, women with a prior cesarean tend to prefer repeat cesarean delivery due to concerns regarding maternal and neonatal safety and potential complications (9-13). To mitigate the rising rates of cesarean deliveries, vaginal birth after cesarean (VBAC) has emerged as a viable strategy (13). For women with a history of one prior C/S, two options are available: VBAC or elective repeat cesarean section (ERCS) (14). Each option carries its own set of risks for

Corresponding Author: Z. Ghalenoei

Department of Obstetrics and Gynecology, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
Tel: +98 9151708756, E-mail address: z.gh.5068@gmail.com

Copyright © 2025 Tehran University of Medical Sciences. Published by Tehran University of Medical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (<https://creativecommons.org/licenses/by-nc/4.0/>). Non-commercial uses of the work are permitted, provided the original work is properly cited

Complications after VBAC

both mothers and infants (14).

The risks associated with VBAC for mothers include an increased likelihood of emergency cesarean section due to failed VBAC attempts, hemorrhage, transfusion requirements, uterine rupture, and endometritis. For infants, VBAC can heighten the risks of asphyxia or perinatal death. Conversely, ERCS is linked to surgical complications, longer recovery times, and a higher likelihood of requiring cesarean delivery in future pregnancies. Other complications include placenta previa/accreta, adhesions, infections, ileus, venous thromboembolism, significant perioperative hemorrhage, and anesthetic complications. Notably, the risk of maternal death is higher in ERCS compared to planned VBAC (13 per 100,000 vs. 4 per 100,000), as is the incidence of neonatal respiratory morbidity (2-3% with planned VBAC vs. 3-4% with ERCS) (15).

A systematic review highlighted that clinicians' personal beliefs significantly influence decision-making regarding delivery methods. Factors related to the healthcare system, such as legal implications and insurance coverage, also play critical roles in these decisions (16). Moreover, a meta-synthesis revealed that in cultures with low rates of VBAC, women often perceive the process as unclear due to insufficient information from healthcare providers during pregnancy and labor (17). In Sistan-Balochistan province in Iran, which has the highest total fertility rate among provinces at 3.714, many women express a strong preference for vaginal delivery—even those with a history of C/S. However, it is common for these women to delay hospital visits until labor symptoms become pronounced due to fears about clinician acceptance of their choices. Many refuse ERCS outright. This study aims to investigate whether unplanned VBAC poses significant complications.

Materials and Methods

This retrospective case series study was conducted at Khash and Baharloo Hospitals in the Sistan-Balochistan province between September 2021 and October 2022.

Sample size determination

A total of 120 women who underwent vaginal birth after cesarean (VBAC) were initially included in the study. The sample size was determined based on the number of VBAC cases recorded during the study period at the two hospitals. This approach ensured we captured a comprehensive dataset that reflected the local population.

Inclusion criteria

The following criteria were used to include participants in the study:

Women with a history of one previous cesarean section (C/S) who requested a trial of labor.

Singleton pregnancy with vertex presentation.

A minimum interval of 18 months since the last C/S.

Estimated fetal weight below 4000 grams based on clinical examination.

Absence of vertical or classic uterine incisions.

No contraindications for vaginal delivery.

Exclusion criteria

Participants were excluded from the study if they met any of the following conditions:

Underwent cesarean delivery due to failed trial of labor after cesarean (TOLAC).

Previous C/S due to arrest of descent or cephalopelvic disproportion.

Presentation to the hospital was too late for safe transfer to an operating room, where immediate surgical intervention was necessary.

All patients provided informed consent to participate in the study, which received ethical approval from the School of Medicine, Tehran University of Medical Sciences (ID: IR.TUMS.MEDICINE.REC.1400.446). The study adhered to the Declaration of Helsinki guidelines.

Data collection

Data were collected from hospital records and included:

Maternal Age

Body mass index (BMI) from the first prenatal visit

Obstetric history

Marital status

Medical history

Number of previous C/S and normal vaginal deliveries (NVD)

Time interval since last C/S

Indication for previous C/S

Type of uterine incision

Gestational Age (GA)

Simplified Bishop Score at admission

Duration of labor in the hospital

Reason for hospital referral

Use or non-use of labor stimulation or augmentation methods

Birth weight and Apgar score at five minutes post-delivery

Statistical analysis

Data entry and analysis were performed using SPSS version 22 software. Descriptive statistics were calculated as follows:

Frequencies (percentages) for categorical variables.

Results

During the study period, 120 women were initially included in the VBAC cohort. After excluding 6 women who underwent cesarean delivery due to failed trial of labor after cesarean (TOLAC), data from 114 women were analyzed. Table 1 summarizes the maternal demographic information.

Complications observed among the participants are detailed in Table 2.

No maternal mortality was recorded during the study period. Among the five cases of uterine rupture, three were asymptomatic and identified during routine examinations, while two presented with vaginal bleeding requiring surgical intervention. All mothers with uterine rupture were under the Age of 40, and all newborns had a healthy outcome with Apgar scores greater than 7 at five minutes. Statistical analysis was performed using SPSS version 22. Descriptive statistics included frequencies and percentages for categorical variables, and means with standard deviations for continuous variables. The significance level was set at $P < 0.05$.

Table 1. Maternal demographic information

Variable	Value
Total Participants	114
Age (Mean \pm SD)	31.5 \pm 5.2 years
Previous normal vaginal deliveries (NVD)	65 (57%)
Previous cesarean sections	8 (7%)
Classic incision history	1 (0.87%)
Gestational age (weeks)	41.5 \pm 1.2

Table 2. Complications of VBAC

Complication	Frequency (%)
Uterine rupture	5 (4.3%)
Endometritis	2 (1.7%)
Placenta retention	1 (0.8%)
Retained product of conception	1 (0.8%)
Uterine atony	1 (0.8%)
Uterine hematoma	1 (0.8%)

Discussion

The findings of this study provide valuable insights into the complications associated with vaginal birth after cesarean delivery (VBAC) in a population where many women express a desire for this mode of delivery. The observed incidence of uterine rupture at 4.3% in our cohort is notably higher than the rates reported in larger studies, which typically range below 1% for women attempting VBAC following a single low transverse cesarean (18). This discrepancy may stem from differences in patient selection criteria, monitoring practices, and the healthcare environment.

Our results align with existing literature indicating that women with a history of prior vaginal deliveries tend to experience lower rates of significant maternal morbidities when attempting VBAC compared to those opting for elective repeat cesarean sections (ERCS) (15-23). Some studies have concluded that although the absolute rates of adverse outcomes in VBAC trials are

low, they are still associated with higher relative rates of severe morbidity and mortality in mothers and neonates (24). In a multicenter study involving over 25,000 patients with prior low transverse cesarean delivery, the authors found that the incidence of uterine rupture was higher in women attempting VBAC than in those who delivered by elective repeat cesarean delivery (RR 21.1, 95% CI 18.6-51.5, $P=0.001$) (20). In that study, the incidence of uterine rupture was less than 1%, whereas it was 4.3% in our study population. This difference may be attributed to their practice of not routinely examining the uterine scar after delivery, even in asymptomatic women. They determined uterine rupture at laparotomy following either non-reassuring fetal heart rate tracing, signs or symptoms of acute maternal blood loss, or the presence of blood in the maternal abdomen at the time of laparotomy (20). However, our patients were routinely examined after delivery for uterine rupture. Indeed, the incidence of symptomatic uterine rupture was 1.7% in our study. Another reason for the higher rate of uterine

Complications after VBAC

rupture in our study is that our patients had a history of more than one cesarean section. There is limited confidence in the evidence regarding cervical ripening and labor induction techniques; thus, we used only amniotomy for this purpose (25). We only used the amniotomy method for this purpose.

The most common reason for converting to C/S in our patients was dysfunctional labor followed by fetal distress, which is in line with a study in Taiwan (26).

Reports indicate a higher rate of major operative injuries such as bladder injury, bowel injury, and uterine artery laceration (0.9% vs. 0.6%) in women who underwent a trial of labor after cesarean (TOLAC) compared to those who had an ERCS (15), however, we observed no cases of major operative injury in our study population (20).

The risk of endometritis after VBAC is reported to be approximately 2.7%; this complication occurred in 1.7% of our parturients. In a retrospective cohort study among term singleton pregnant patients delivered by VBAC in-hospital, 2.68% of neonates had a 5-minute Apgar score less than 7 (27). All neonates with a 5-minute Apgar score < 7 were preterm; therefore, we could not determine whether this complication was due to prematurity or was a consequence of VBAC. Overall, neonatal and maternal outcomes were favorable in women undergoing TOLAC versus ERCD. A failed TOLAC was responsible for the majority of morbidity. It is expected that the cohort studies in the future will examine the maternal and perinatal morbidity of women who have planned TOLAC compared to women who attempt to do unplanned VBAC.

Overall, neonatal and maternal outcomes were favorable in women undergoing TOLAC versus ERCS. A failed TOLAC was responsible for the majority of morbidity. Future cohort studies should examine maternal and perinatal morbidity among women who have planned TOLAC compared to those who attempt unplanned VBAC.

The strengths of this study include sampling from two independent centers; however, some limitations should be acknowledged. The relatively small sample size may limit the generalizability of our findings; thus, further well-designed studies with larger samples are required to confirm these results.

In summary, this study reveals that while vaginal birth after cesarean delivery can be a viable option for many women, it carries significant risks, including a higher incidence of uterine rupture compared to established literature. Understanding these complications is crucial to developing localized guidelines that inform obstetricians

and empower patients in their decision-making. Future research should focus on larger, multicenter studies to validate these findings and explore strategies to minimize risks associated with VBAC. Additionally, investigating the long-term outcomes for mothers and infants following VBAC could provide further insights into optimizing care for this population.

The study received ethical approval from the School of Medicine, Tehran University of Medical Sciences (ID: IR.TUMS.MEDICINE.REC.1400.446).

References

1. Betrán AP, Ye J, Moller AB, Zhang J, Gürmezoglu AM, Torloni MR. The increasing trend in caesarean section rates: global, regional and national estimates: 1990–2014. *PLoS One* 2016;11:e0148343.
2. Gregory KD, Jackson S, Korst L, Fridman M. Cesarean versus vaginal delivery: whose risks? Whose benefits? *Am J Perinatol* 2012;29:7-18.
3. Clark EA, Silver RM. Long-term maternal morbidity associated with repeat cesarean delivery. *Am J Obstet Gynecol* 2011;205: S2-10.
4. Keedle H, Schmied V, Burns E, Dahlen HG. From coercion to respectful care: women's interactions with health care providers when planning a VBAC. *BMC Pregnancy Childbirth* 2022;22:70.
5. Basile Ibrahim B, Kennedy HP, Whittemore R. Women's perceptions of barriers and facilitators to vaginal birth after cesarean in the United States: an integrative review. *J Midwifery Womens Health* 2020;65:349-61.
6. Chan MH, Hauck Y, Kuliukas L, Lewis L. Women's experiences of their involvement in care decisions during a subsequent pregnancy after a previous caesarean birth in Western Australia. *Women Birth* 2021;34:e442-50.
7. World Health Organization. WHO statement on caesarean section rates. Geneva: World Health Organization; 2015:149-50
8. Betrán AP, Torloni MR, Zhang JJ, Gürmezoglu AM. WHO statement on caesarean section rates. *BJOG* 2016;123:667-70.
9. Tampakoudis P, Assimakopoulos E, Grimbizis G, Zafrakas M, Tampakoudis G, Mantalenakis S, et al. Cesarean section rates and indications in Greece: data from 24 years in a teaching hospital. *Clin Exp Obstet Gynecol* 2004;31:289-92.
10. Timofeev J, Reddy UM, Huang CC, Driggers RW, Landy HJ, Laughon SK. Obstetric complications, neonatal morbidity, and indications for cesarean delivery by maternal age. *Obstet Gynecol* 2013;122:1184-95.
11. Zaigham M, Varallo J, Thangaratinam S, Nicholson W,

Visser GHA. Global disparities in caesarean section rates: why indication-based metrics are needed. *PLOS Glob Public Health* 2024;4:e0002877.

12. Betrán AP, Ye J, Moller AB, Souza JP, Zhang J. Trends and projections of caesarean section rates: global and regional estimates. *BMJ Glob Health* 2021;6:e005671.
13. Cunningham F, Bangdiwala S, Brown S, Dean T, Frederiksen M, Hogue CR, et al. National Institutes of Health consensus development conference statement: vaginal birth after cesarean section: new insights, March 8–10, 2010. *Obstet Anesth Dig* 2011;31:140–2.
14. Fobelets M, Beeckman K, Faron G, Daly D, Begley C, Putman K. Vaginal birth after caesarean versus elective repeat caesarean delivery after one previous caesarean section: a cost-effectiveness analysis in four European countries. *BMC Pregnancy Childbirth* 2018;18:1–10.
15. Talaulikar VS, Arulkumaran S. Vaginal birth after caesarean section. *Obstet Gynaecol Reprod Med* 2015;25:195–202.
16. Panda S, Begley C, Daly D. Clinicians' views of factors influencing decision-making for caesarean section: a systematic review and metasynthesis of qualitative, quantitative and mixed-methods studies. *PLoS One* 2018;13:e0200941.
17. Lundgren I, Begley C, Gross MM, Bondas T. Groping through the fog: a metasynthesis of women's experiences on VBAC. *BMC Pregnancy Childbirth* 2012;12:1–11.
18. Chen HY, Blackwell SC, Chauhan SP. Association between Apgar score at 5 minutes and adverse outcomes among low-risk pregnancies. *J Matern Fetal Neonatal Med* 2022;35:1344–51.
19. Laughon SK, Zhang J, Troendle J, Sun L, Reddy UM. Using a simplified Bishop score to predict vaginal delivery. *Obstet Gynecol* 2011;117:805–11.
20. Macones GA, Peipert J, Nelson DB, Odibo A, Stevens EJ, Stamilio DM, et al. Maternal complications with vaginal birth after cesarean delivery: a multicenter study. *Am J Obstet Gynecol* 2005;193:1656–62.
21. Zhang J, Landy HJ, Branch DW, Burkman R, Haberman S, Gregory KD, et al. Contemporary patterns of spontaneous labor with normal neonatal outcomes. *Obstet Gynecol* 2010;116:1281–7.
22. Guise JM, Eden K, Emeis C, Denman MA, Marshall N, Fu RR, et al. Vaginal birth after cesarean: new insights. *Evid Rep Technol Assess* 2010;191:1–397.
23. Cahill AG, Stamilio DM, Odibo AO, Peipert JF, Ratcliffe SJ, Stevens EJ, et al. Is vaginal birth after cesarean or elective repeat cesarean safer in women with a prior vaginal delivery? *Am J Obstet Gynecol* 2006;195:1143–7.
24. Young CB, Liu S, Muraca GM, Sabr Y, Pressey T, Liston RM, et al. Mode of delivery after a previous cesarean birth and associated maternal and neonatal morbidity. *CMAJ* 2018;190:E556–64.
25. Wingert A, Hartling L, Sebastianski M, Johnson C, Featherstone R, Vandermeer B, et al. Clinical interventions that influence vaginal birth after cesarean delivery rates: systematic review and meta-analysis. *BMC Pregnancy Childbirth* 2019;19:1–19.
26. Li WH, Yang MJ, Wang PH, Juang CM, Chang YW, Wang HI, et al. Vaginal birth after cesarean section: 10 years of experience in a tertiary medical center in Taiwan. *Taiwan J Obstet Gynecol* 2016;55:394–8.
27. Tilden EL, Cheyney M, Guise JM, Emeis C, Lapidus J, Biel FM, et al. Vaginal birth after cesarean: neonatal outcomes and United States birth setting. *Am J Obstet Gynecol* 2017;216:403.e1–8.