

Aazole Resistance and CYP51A/B Mutations in *Aspergillus* Clinical Isolates Before and During the COVID-19 Pandemic: A Molecular Surveillance Study

Mohammadrafi Khorgami¹, Shirin Sayyahfar², Negar Omidi³, Maryam Moradian¹, Nikta Aliabadi⁴, Pegah Tamimi⁵, Aliasghar Ghaderi⁵, Hengameh Soudi¹, Fatemeh Naderi¹, Mahsa Fattahi^{6,7*}, Fatemeh Omidi^{8**}

¹ Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

² Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

³ Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran

⁴ Department of Microbiology, Islamic Azad University, Tehran Branch, Tehran, Iran

⁵ School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

⁶ Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran

⁷ Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran

⁸ Department of Cardiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Received: 03 Feb. 2025; Accepted: 21 Oct. 2025

Abstract- We conducted a cross-sectional study to (I) determine the relative frequency of antifungal-resistant *Aspergillus* clinical isolates, (II) address changes in susceptibility to available antifungals in patients infected with *Aspergillus* spp. with COVID-19, and (III) determine mutations in the *CYP51A* and *CYP51B* genes of *Aspergillus* spp. Isolated from the clinical specimens. A total of 30 fungal species were enrolled in the study. The antifungal activities of itraconazole and voriconazole were assessed using azole-containing agar media in Petri dishes. After identifying resistance in the isolates, the *CYP51A* and *CYP51B* gene regions were sequenced using the designed primers, and mutations were identified. To amplify *CYP51A* and *CYP51B*, primers with the specified sequences were used. Genomic DNA from 22 azole-resistant *Aspergillus* isolates was amplified using the *CYP51-A* and *CYP51-B* gene primers. 12/22 (54.54%) azole-resistant *A. flavus* isolates with the Tandem Repeat (TR34)/L98H (leucine-to-histidine substitution) mutation, MICs above the CLSI Epidemiological Cutoff Value. One carried the F46Y /TR34. 5/22 azole non-WT *A. fumigatus* isolates, *CYP51-A* analysis revealed that M220I, S297T/ TR34/L98H mutations, 4 *A. orezea* isolates had C498T/TR34 at a *CYP51-B* gene. Antifungal susceptibility testing should be performed when possible, and efficient systems must be implemented to monitor the evolution of newly introduced azole-resistant *Aspergillus* spp. In addition, these data are useful for clinicians to understand the incidence of azole resistance, enabling optimal management of affected patients and helping choose the right solution for infection management.

© 2025 Tehran University of Medical Sciences. All rights reserved.

Acta Med Iran 2025;63(November-December):324-329.

<https://doi.org/10.18502/acta.v63i6.20673>

Keywords: Antifungal resistance; COVID-19; *Aspergillus*; Cytochromes P 51 gene (CYP51 gene)

Introduction

The increasing incidence of fungal diseases has become a challenge in the world, with more than one

billion people suffering from fungal infections, and about 1·6 million people are estimated to die of fungal diseases annually. *Aspergillus* is among the most common causes of fatal fungal infections (1). The COVID-19 pandemic,

Corresponding Authors: M. Fattahi* and F. Omidi**

* Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
Tel: +98 2166935855, E-mail address: dr.mahsafattahi@gmail.com

** Department of Cardiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Tel: +98 2173433000, E-mail address: dr.fateme.omidi@gmail.com

caused by the SARS-CoV-2 virus, led to a large number of cases of Acute Respiratory Distress Syndrome (ARDS), many of whom required hospitalization and admission to the Intensive Care Unit (ICU). Among these critically ill patients, superinfections—particularly bacterial and fungal—were prevalent and played a key role in increasing morbidity and mortality. Contributing factors included excessive corticosteroid administration, prolonged use of broad-spectrum antibiotics, intravascular catheter placement, mechanical ventilation, and hemodialysis. These conditions created an environment where infections like mucormycosis, aspergillosis, and candidiasis could thrive. Nine cohort studies show that 8% of COVID-19 patients had bacterial-fungal coinfections (2). Invasive pulmonary aspergillosis (IPA) has been increasingly reported in these patients, as observed during past influenza pandemics, though precise incidence rates have not yet been determined (3-11). *Aspergillus* species can cause a spectrum of disease, ranging from mild allergic reactions to severe invasive infections, depending on the patient's immune status and exposure to fungal spores. *Aspergillus fumigatus* accounts for most human infections, but other species, such as *Aspergillus flavus*, *Aspergillus terreus*, and *Aspergillus niger*, can also be involved (12,13).

Amphotericin B and azoles are the main treatments for aspergillosis, with voriconazole being the first-line therapy. Azoles, including itraconazole, isavuconazole, and posaconazole, inhibit lanosterol 14 α -demethylase, an enzyme crucial for ergosterol biosynthesis (14-16). *Aspergillus* species have two isozymes, *CYP51A* and *CYP51B*; while neither is individually essential for growth, both must be inactivated to halt growth completely (18-20). The rise of azole-resistant *Aspergillus* spp. since the COVID-19 pandemic has led to increased global efforts, including in Iran, to monitor and assess the spread of these resistant strains.

The molecular mechanisms of azole resistance can be divided into two general categories: *CYP51*-mediated and non-*CYP51*-mediated (21). Studies have revealed that mutations in the *CYP51* gene are found in 50% of azole-resistant clinical and environmental isolates of *Aspergillus* spp. (22).

Therefore, we conducted a cross-sectional study to (I) determine the relative frequency of antifungal-resistant *Aspergillus* clinical isolates, (II) address changes in susceptibility to available antifungals in patients infected with *Aspergillus* spp. with COVID-19, and (III) determine mutations in the *CYP51A* and *CYP51B* genes of *Aspergillus* spp. Isolated from the clinical specimens.

Materials and Methods

Study areas

This study was conducted on 50 hospitalized patients at Shahid Rajaee Hospital, Tehran, Iran, and on patients who were referred to the Immunology, Asthma, and Allergy Research Institute, Tehran, Iran, from January 2017 to the end of 2024. The diagnosis of COVID-19 was confirmed using the specific transcriptase-polymerase chain reaction (RT-PCR). Demographic and clinical data, such as initial diagnoses, predisposing factors, comorbidities, and risk factors for fungal infections, were recorded.

Bronchoscopy was used to collect the bronchoalveolar lavage (BAL) specimens. First, the specimens were subjected to direct microscopic examination using the 10% potassium hydroxide. Then they were cultured on 2% dextrose Sabouraud agar (SDA) (Merck, Denmark) and incubated at 35° C for 7 days. To identify the *Aspergillus* spp., DNA was extracted from the isolated colonies using the Roche (Germany) DNA extraction kit. The PCR was performed according to the program previously mentioned (19).

Antifungal susceptibility assay

Screening for drug-resistant clinical isolates was performed using the Antifungal-Containing Agar Medium Method (TCAM). *Aspergillus* isolates were subcultured on Potato Dextrose Agar (PDA) for 7 days at 30° C. In vitro susceptibility testing was performed according to the Clinical & Laboratory Standards Institute (CLSI). For all clinical isolates, fungal growth was tested on a Sabouraud Dextrose Agar (SDA) plate containing 0.1 µg/mL of voriconazole and itraconazole, and on a drug-free control SDA plate. Visual investigation of fungal growth was done after 24 hours. Both antifungal agents were obtained from Sigma (USA).

Candida parapsilosis ATCC 22019 was used as quality control (23). All tests were performed twice.

After identifying resistance in the isolates, the *CYP51A* and *CYP51B* gene regions were sequenced using the designed primers, and mutations were identified. To amplify *CYP51A* and *CYP51B*, primers with the specified sequences were used.

Molecular identification of mutations in the *CYP51A* and *CYP51B* genes

Genomic DNA was extracted to discover the underlying mutations of resistance isolates of *Aspergillus* spp. *CYP51-A* and *B*, and promoter regions, were amplified using specific primer sets. The sequences of the

Drug resistance of aspergillus species

relevant gene loci were assembled and edited with a DNA Sequence Assembler (version 5.15), aligned with reference strains, and then compared.

Statistical analysis

Data were analyzed using SPSS software version 29. To compare variables, Fisher's exact tests were applied. The significance level was set at 0.05 or lower. The MICs Value, Minimum Inhibitory Concentrations (MICs) range, and MICs 90 were calculated for all antifungals. The MIC90 was estimated for organisms with at least 9 observations, the minimum number for which extrapolation would not be necessary. The 95% Confidence Intervals (CI) for the MIC90 were estimated as bootstrap percentile confidence intervals in Mathematica 8 (Wolfram, Champaign, IL) for species with at least 9 observations.

Results

Table 1. Frequency and distribution of 30 *Aspergillus* isolates from two centers: identification using conventional methods and clinical localization of infection

Identification sequencing method	by	ABPA N (%)	Valve N (%)	Pediatric N (%)	Adults N (%)
<i>A. flavus</i>		15(75%)	5(25%)	4(20%)	16 (80%)
<i>A. fumigatus</i>		6(60%)	4(40%)	1(10%)	9(90%)
Total (n=30)		21(70%)	9(30%)	5 (16.6%)	25(83.33%)

This table presents the frequency and distribution of 30 *Aspergillus* isolates obtained from two clinical centers. The table provides a breakdown of the most common *Aspergillus* spp. identified, along with their relative frequencies relative to the total number of isolates from both centers. This distribution is analyzed to identify any notable patterns or trends in the occurrence of *Aspergillus* infections across the two settings.

Identification and antifungal susceptibility testing

Of 50 enrolled cases, 23 patients (46%) were infected with COVID-19, and 33 were not.

There was a significant difference between the glucocorticoid treatment ($P<0.044$), broad-spectrum antibiotics therapy ($P<0.051$), and invasive ventilator ($P<0.01$) in patients with COVID-19 in comparison to cases without COVID-19.

There was a significant difference in the presence of a Central Venous Catheter (CVC) ($P<0.033$) and intensive care unit (ICU) duration ($P<0.025$) between patients with and without COVID-19. There were no differences in gender or risk factors between cases with and without COVID-19 infection.

Using conventional diagnostic methods, 20 samples of *A. flavus* (n:20; 66.66%) were identified, followed by 10 specimens of *A. fumigatus* (n:10; 33.33%) (Table 1).

Preliminary monitoring of the 30 isolates for azole resistance was conducted using the TCAM method. A total of 22 isolates out of 30 (73.33%) grew on the azole-containing Petri dish. Three other resistant isolates to itraconazole (n=2) and voriconazole (n=1) were identified as *A. flavus* according to morphological features (Table 2).

Table 2. Resistance patterns to antifungal agents and molecular characteristics of *Aspergillus* spp. Isolated from patients with and without COVID-19

Identification	Antifungal (95% CI); GM(μg/mL)		Susceptibility		MICs90
	Classical methods	Molecular methods	Itraconazole	Voriconazole	
<i>A. flavus</i>		<i>A. flavus</i>	16; 3.48 (N:5)	8;4.75 (N:8)	
<i>A. flavus</i>		<i>A. orizea</i>	4;4 (N:4)	4;4 (N:2)	
<i>A. fumigatus</i>		<i>A. fumigatus</i>	4;2.3 (N:3)	4; 3.01 (N:5)	

*MIC90 estimated for species with at least 9 isolates, the smallest number where extrapolation would not be necessary

*Estimation of 95% CI only performed for genus or species with at least 9 isolates

Sequencing analysis showed that all these resistant *A. flavus* isolates belonged to the *A. orizea*.

Regarding Table 3. The MICs of the tested antifungals increased 4- to 16-fold for *Aspergillus* strains following

COVID-19 infection.

Regarding the present data, significant differences were observed between increased use of antifungal agents during COVID-19 and the emergence of drug-resistant isolates.

Genomic DNA from 22 azole-resistant *Aspergillus* isolates was amplified using the *CYP51-A* and *CYP51-B* gene primers. 12/22 (54.54%) azole-resistant *A. flavus*

isolates with the Tandem Repeat (TR34)/L98H (leucine-to-histidine substitution) mutation, MICs above the CLSI Epidemiological Cutoff Value (CLSI ECV). One carried the F46Y /TR34. 5/22 azole non-WT *A. fumigatus* isolates, *CYP51-A* analysis revealed that M220I, S297T/TR34/L98H mutations, 4 *A. oryzae* isolates had C498T/TR34 at a *CYP51-B* gene.

Table 3. Minimum inhibitory concentrations (MICs) of antifungal agents against *Aspergillus* spp. isolated from patients with and without COVID-19

Strains	MIC range Itraconazole in patients without COVID-19 (µg/mL)	MIC range Itraconazole in patients with COVID-19 (µg/mL)	Fold change in MIC
<i>A. flavus</i>	0.03-0.125	0.03-16	1-8
<i>A. oryzae</i>	0.03-0.6	0.25-4	4-12
<i>A. fumigatus</i>	0.0625-0.125	0.5-4	6-10
Strains	MIC range of voriconazole in patients without COVID-19	MIC range voriconazole in patients with COVID-19 (µg/mL)	Fold change in MIC
<i>A. flavus</i>	0.03-0.5	0.5-4	8-6
<i>A. oryzae</i>	0.0625-0.125	0.25-4	2-10
<i>A. fumigatus</i>	0.03-0.5	0.125-4	4-6

This table presents the minimum inhibitory concentrations (MICs) of various antifungal agents. Isolates were obtained from both COVID-19-positive and COVID-19-negative patients. Antifungal susceptibility testing was performed according to CLSI/EUCAST guidelines, and MIC values are reported to indicate the level of antifungal activity required to inhibit the growth of each isolate. The table also highlights potential differences in susceptibility patterns between the two patient groups, contributing to the understanding of resistance trends during the COVID-19 pandemic.

Discussion

Resistance trends pre- and post-COVID

Since the onset of the COVID-19 outbreak, considerable increases in antifungal resistance have been reported, which may be due to increased use of wide-spectrum systemic antifungal agents, but the true relative frequency has not yet been defined. In this cross-sectional study, azole and amphotericin B resistance were recorded in *Aspergillus* spp. The identification of amphotericin B- and itraconazole-resistant isolates after the COVID-19 pandemic has become a concern. Since the treatment of

chronic ABPA, as well as *Aspergillus* cardiac infection, requires repeated courses of amphotericin B and itraconazole, this could increase the risk of selecting for resistant species. In addition, as liposomal amphotericin B is no longer commercially available in our region, voriconazole and itraconazole are now considered first-line treatment for invasive aspergillosis. Therefore, we believe there will be greater pressure to use the mentioned azole in the coming years, which implies a high risk of selection for azole-resistant strains worldwide.

Resistance to azoles before the COVID-19 pandemic has also been detected, albeit sporadically, in France, India, Japan, China, Denmark, Switzerland, Norway, Germany, Argentina, with prevalence values ranging from 0% to 8.1% (24-27). The percentage of azole-resistant strains is similar to that reported in other studies during or after the COVID-19 pandemic, with the highest proportion of non-wild-type isolates (19,28-30).

The rapid spread of resistance species highlights the role of antifungal susceptibility testing. In the present study, the TCAM was applied straightforwardly, allowing us to monitor 30 isolates from two different centers. There is a significant correlation between the results obtained with this method and those of the CLSI

Drug resistance of aspergillus species

reference method, supporting its reliability. However, TCAM is a qualitative technique that does not precisely define susceptibility to antifungal medications.

Mutation patterns

In the present study, the T293A alteration, leading to the amino acid substitution L98H, was found in 12 isolates of *A. flavus*: 8 were voriconazole-resistant, and 5 showed cross-resistance to itraconazole. The TR34 mutation was also reported in 12 isolates, the same mutations reported from the Netherlands, Denmark, and China (31), Brazil (32,33), and Kenya. Literature review showed that the TR34/L98H substitution was the most commonly reported mutation in *A. fumigatus* recovered from clinical samples.

For the first time, we reported (M220I, S297T, F46Y) and C498T/TR34 substitution in clinical samples of *A. fumigatus* isolates and clinical samples of *A. orezea* isolates, respectively.

The pattern of antifungal resistance appears to have evolved during the COVID-19 pandemic. Notably, there has been an increase in the detection of azole-resistant *Aspergillus* isolates in COVID-19 patients. Therefore, it is strongly recommended to perform antifungal susceptibility testing whenever feasible. Additionally, effective surveillance systems should be implemented to monitor the emergence and spread of azole-resistant *Aspergillus* spp. These data are essential for clinicians to understand the current incidence of azole resistance and to optimize the management of affected patients. Furthermore, this information is crucial in selecting the most appropriate antifungal therapy, ensuring more targeted and effective treatment strategies for managing *Aspergillus* infections.

The Ethics Committee of Shahid Rajaee Hospitals, Tehran, Iran, approved this study (ethics code: IR.TUMS.SPH.REC.97000).

Acknowledgements

The authors are thankful to Tehran University of Medical Sciences for its support in conducting this research.

References

1. Cole DC, Govender NP, Chakrabarti A, Sacarlal J, Denning DW. Improvement of fungal disease identification and management: combined health systems and public health approaches. *Lancet Infect Dis* 2017;17:e412-9.
2. Rawson TM, Moore LS, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. *Clin Infect Dis* 2020;71:2459-68.
3. Hoenigl M. Invasive fungal disease complicating coronavirus disease 2019: when it rains, it spores. *Clin Infect Dis* 2021;72:e1645-8.
4. Lansbury L, Lim B, Baskaran V, Lim WS. Coinfections in people with COVID-19: a systematic review and meta-analysis. *J Infect* 2020;81:266-75.
5. Koehler P, Cornely OA, Böttiger BW, Dusse F, Eichenauer DA, Fuchs F, et al. COVID-19 associated pulmonary aspergillosis. *Mycoses* 2020;63:528-34.
6. Verweij PE, Gangneux JP, Bassetti M, Brüggemann RJ, Cornely OA, Koehler P, et al. Diagnosing COVID-19-associated pulmonary aspergillosis. *Lancet Microbe* 2020;1:e53-5.
7. Koehler P, Bassetti M, Chakrabarti A, Chen SC, Colombo AL, Hoenigl M, et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. *Lancet Infect Dis* 2021;21:e149-62.
8. Delliére S, Dudoignon E, Fodil S, Voicu S, Collet M, Oillic PA, et al. Risk factors associated with COVID-19-associated pulmonary aspergillosis in ICU patients: a French multicentric retrospective cohort. *Clin Microbiol Infect* 2021;27:790.e1-5.
9. Marr KA, Platt A, Tornheim JA, Zhang SX, Datta K, Cardozo C, et al. Aspergillosis complicating severe coronavirus disease. *Emerg Infect Dis* 2021;27:18-25.
10. Benedetti MF, Alava KH, Sagardia J, Cadena RC, Laplume D, Capece P, et al. COVID-19 associated pulmonary aspergillosis in ICU patients: report of five cases from Argentina. *Med Mycol Case Rep* 2021;31:24-8.
11. Machado M, Valerio M, Álvarez-Uría A, Olmedo M, Veintimilla C, Padilla B, et al. Invasive pulmonary aspergillosis in the COVID-19 era: an expected new entity. *Mycoses* 2021;64:132-43.
12. Latgé JP. *Aspergillus fumigatus* and aspergillosis. *Clin Microbiol Rev* 1999;12:310-50.
13. Rudramurthy SM, Paul RA, Chakrabarti A, Mouton JW, Meis JF. Invasive aspergillosis by *Aspergillus flavus*: epidemiology, diagnosis, antifungal resistance, and management. *J Fungi* 2019;5:1-15.
14. Zakaria A, Osman M, Dabboussi F, Rafei R, Mallat H, Papon N, et al. Recent trends in the epidemiology, diagnosis, treatment, and mechanisms of resistance in clinical *Aspergillus* species: a general review with a special focus on the Middle Eastern and North African region. *J*

Infect Public Health 2020;13:1-10.

15. Lestrade PPA, Meis JF, Melchers WJG, Verweij PE. Triazole resistance in *Aspergillus fumigatus*: recent insights and challenges for patient management. *Clin Microbiol Infect* 2019;25:799-806.
16. Garcia-Rubio R, Alcazar-Fuoli L, Monteiro MC, Monzon S, Cuesta I, Pelaez T, et al. Insight into the significance of *Aspergillus fumigatus* cyp51A polymorphisms. *Antimicrob Agents Chemother* 2018;62:e02000-17.
17. Hagiwara D, Watanabe A, Kamei K, Goldman GH. Epidemiological and genomic landscape of azole resistance mechanisms in *Aspergillus* fungi. *Front Microbiol* 2016;7:1382.
18. Badali H, Vaezi A, Haghani I, Yazdanparast SA, Hedayati MT, Mousavi B, et al. Environmental study of azole-resistant *Aspergillus fumigatus* with TR34/L98H mutations in the cyp51A gene in Iran. *Mycoses* 2013;56:659-63.
19. Erami M, Hashemi SJ, Raiesi O, Fattahi M, Getso MI, Momen-Heravi M, et al. COVID-19-associated pulmonary aspergillosis in Iranian patients admitted with severe COVID-19 pneumonia. *Infection* 2022;50:1-8.
20. Alanio A, Delliére S, Fodil S, Bretagne S, Mégarbane B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. *Lancet Respir Med* 2020;8:e48-9.
21. Chen P, Liu J, Zeng M, Sang H. Exploring the molecular mechanism of azole resistance in *Aspergillus fumigatus*. *J Mycol Med* 2020;30:100915.
22. Dudakova A, Spiess B, Tangwattanachuleeporn M, Sasse C, Buchheidt D, Weig M, et al. Molecular tools for the detection and deduction of azole antifungal drug resistance phenotypes in *Aspergillus* species. *Clin Microbiol Rev* 2017;30:1065-91.
23. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI document M27-A2. Wayne, PA: CLSI; 2002.
24. Pham CD, Reiss E, Hagen F, Meis JF, Lockhart SR. Passive surveillance for azole-resistant *Aspergillus fumigatus*, United States, 2011–2013. *Emerg Infect Dis* 2014;20:1498-501.
25. Van der Linden J, Arendrup M, Warris A, Lagrou K, Pelloux H, Hauser P, et al. Prospective multicenter international surveillance of azole resistance in *Aspergillus fumigatus*. *Emerg Infect Dis* 2015;21:1041-4.
26. Denning DW, Cadrelan J, Beigelman-Aubry C, Ader F, Chakrabarti A, Blot S, et al. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. *Eur Respir J* 2016;47:45-68.
27. Romero M, Messina F, Marin E, Arechavala A, Depardo R, Walker L, et al. Antifungal resistance in clinical isolates of *Aspergillus* spp.: when local epidemiology breaks the norm. *J Fungi* 2019;5:41.
28. Meijer EF, Dofferhoff AS, Hoiting O, Buil JB, Meis JF. Azole-resistant COVID-19-associated pulmonary aspergillosis in an immunocompetent host: a case report. *J Fungi* 2020;6:79.
29. Ghelfenstein-Ferreira T, Saade A, Alanio A, Bretagne S, de Castro RA, Hamane S, et al. Recovery of a triazole-resistant *Aspergillus fumigatus* in respiratory specimen of COVID-19 patient in ICU: a case report. *Med Mycol Case Rep* 2021;31:15-8.
30. Mohamed A, Hassan T, Trzos-Grzybowska M, Thomas J, Quinn A, O'Sullivan M, et al. Multi-triazole-resistant *Aspergillus fumigatus* and SARS-CoV-2 coinfection: a lethal combination. *Med Mycol Case Rep* 2021;31:11-4.
31. Chen Y, Li Z, Han X, Tian S, Zhao J, Chen F, et al. Elevated MIC values of imidazole drugs against *Aspergillus fumigatus* isolates with TR34/L98H/S297T/F495I mutation. *Antimicrob Agents Chemother* 2018;62:e01549-17.
32. Pontes L, Beraquet CAG, Arai T, Pigolli GL, Lyra L, Watanabe A, et al. *Aspergillus fumigatus* clinical isolates carrying CYP51A with TR34/L98H/S297T/F495I substitutions detected after four-year retrospective azole resistance screening in Brazil. *Antimicrob Agents Chemother* 2020;64:e02059-19.
33. Kemoi E, Bii C, Nyerere A. Azole-resistant *Aspergillus fumigatus* with TR34/L98H mutation from clinical isolates in Kenya. *East Afr Med J* 2023;100:5832-7.