ORIGINAL ARTICLE

Azole Resistance and CYP51A/B Mutations in Aspergillus Clinical Isolates
Before and During the COVID-19 Pandemic: A Molecular Surveillance Study
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Abstract- We conducted a cross-sectional study to (I) determine the relative frequency of antifungal-resistant
Aspergillus clinical isolates, (1) address changes in susceptibility to available antifungals in patients infected
with Aspergillus spp. with COVID-19, and (III) determine mutations in the CYP51A and CYP51B genes of
Aspergillus spp. Isolated from the clinical specimens. A total of 30 fungal species were enrolled in the study.
The antifungal activities of itraconazole and voriconazole were assessed using azole-containing agar media in
Petri dishes. After identifying resistance in the isolates, the CYP51A and CYP51B gene regions were sequenced
using the designed primers, and mutations were identified. To amplify CYP51A and CYP51B, primers with the
specified sequences were used. Genomic DNA from 22 azole-resistant Aspergillus isolates was amplified using
the CYP51-A and CYP51-B gene primers. 12/22 (54.54%) azole-resistant 4. flavus isolates with the Tandem
Repeat (TR34)/L98H (leucine-to-histidine substitution) mutation, MICs above the CLSI Epidemiological
Cutoff Value. One carried the F46Y /TR34. 5/22 azole non-WT A. fumigatus isolates, CYP51-A analysis
revealed that M2201, S297T/ TR34/L98H mutations, 4 4.orezea isolates had C498T/TR34 at a CYP51-B gene.
Antifungal susceptibility testing should be performed when possible, and efficient systems must be
implemented to monitor the evolution of newly introduced azole-resistant Aspergillus spp. In addition, these
data are useful for clinicians to understand the incidence of azole resistance, enabling optimal management of
affected patients and helping choose the right solution for infection management.
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Introduction billion people suffering from fungal infections, and about
1-6 million people are estimated to die of fungal diseases

The increasing incidence of fungal diseases has annually. Aspergillus is among the most common causes
become a challenge in the world, with more than one of fatal fungal infections (1). The COVID-19 pandemic,
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caused by the SARS-COV-2 virus, led to a large number
of cases of Acute Respiratory Distress Syndrome
(ARDS), many of whom required hospitalization and
admission to the Intensive Care Unit (ICU). Among these
critically ill patients, superinfections—particularly
bacterial and fungal—were prevalent and played a key
role in increasing morbidity and mortality. Contributing
factors included excessive corticosteroid administration,
prolonged use of broad-spectrum antibiotics,
intravascular catheter placement, mechanical ventilation,
and hemodialysis. These conditions created an
environment where infections like mucormycosis,
aspergillosis, and candidiasis could thrive. Nine cohort
studies show that 8% of COVID-19 patients had
bacterial-fungal coinfections (2). Invasive pulmonary
aspergillosis (IPA) has been increasingly reported in
these patients, as observed during past influenza
pandemics, though precise incidence rates have not yet
been determined (3-11). Aspergillus species can cause a
spectrum of disease, ranging from mild allergic reactions
to severe invasive infections, depending on the patient's
immune status and exposure to fungal spores. Aspergillus
fumigatus accounts for most human infections, but other
species, such as Aspergillus flavus, Aspergillus terreus,
and Aspergillus niger, can also be involved (12,13).

Amphotericin B and azoles are the main treatments
for aspergillosis, with voriconazole being the first-line
therapy. Azoles, including itraconazole, isavuconazole,
and posaconazole, inhibit lanosterol 14a-demethylase, an
enzyme crucial for ergosterol biosynthesis (14-16).
Aspergillus species have two isozymes, CYP51A and
CYP51B; while neither is individually essential for
growth, both must be inactivated to halt growth
completely (18-20). The rise of azole-resistant
Aspergillus spp. since the COVID-19 pandemic has led to
increased global efforts, including in Iran, to monitor and
assess the spread of these resistant strains.

The molecular mechanisms of azole resistance can be
divided into two general categories: CYP51-mediated and
non-CYP51-mediated (21). Studies have revealed that
mutations in the CYP 51 gene are found in 50% of azole-
resistant clinical and environmental isolates of
Aspergillus spp. (22).

Therefore, we conducted a cross-sectional study to (I)
determine the relative frequency of antifungal-resistant
Aspergillus clinical isolates, (II) address changes in
susceptibility to available antifungals in patients infected
with Aspergillus spp. with COVID-19, and (III)
determine mutations in the CYP51A and CYP51B genes
of Aspergillus spp. Isolated from the clinical specimens.
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Materials and Methods

Study areas

This study was conducted on 50 hospitalized patients
at Shahid Rajaee Hospital, Tehran, Iran, and on patients
who were referred to the Immunology, Asthma, and
Allergy Research Institute, Tehran, Iran, from January
2017 to the end of 2024. The diagnosis of COVID-19 was
confirmed using the specific transcriptase-polymerase
chain reaction (RT-PCR). Demographic and clinical data,
such as initial diagnoses, predisposing factors,
comorbidities, and risk factors for fungal infections, were
recorded.

Bronchoscopy was used to collect the
bronchoalveolar lavage (BAL) specimens. First, the
specimens were subjected to direct microscopic
examination using the 10% potassium hydroxide. Then
they were cultured on 2% dextrose Sabouraud agar
(SDA) (Merck, Denmark) and incubated at 35° C for 7
days. To identify the Aspergillus spp., DNA was
extracted from the isolated colonies using the Roche
(Germany) DNA extraction kit. The PCR was performed
according to the program previously mentioned (19).

Antifungal susceptibility assay

Screening for drug-resistant clinical isolates was
performed wusing the Antifungal-Containing Agar
Medium Method (TCAM). Aspergillus isolates were
subcultured on Potato Dextrose Agar (PDA) for 7 days at
30° C. In vitro susceptibility testing was performed
according to the Clinical & Laboratory Standards
Institute (CLSI). For all clinical isolates, fungal growth
was tested on a Sabouraud Dextrose Agar (SDA) plate
containing 0.1 pg/mL of voriconazole and itraconazole,
and on a drug-free control SDA plate. Visual
investigation of fungal growth was done after 24 hours.
Both antifungal agents were obtained from Sigma (USA).

Candida parapsilosis ATCC 22019 was used as
quality control (23). All tests were performed twice.

After identifying resistance in the isolates, the
CYP51A and CYP51B gene regions were sequenced
using the designed primers, and mutations were
identified. To amplify CYP51A and CYP51B, primers
with the specified sequences were used.

Molecular identification of mutations in the CYPS51A
and CYP51B genes

Genomic DNA was extracted to discover the
underlying mutations of resistance isolates of Aspergillus
spp. CYP51-A and B, and promoter regions, were
amplified using specific primer sets. The sequences of the
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relevant gene loci were assembled and edited with a DNA
Sequence Assembler (version 5.15), aligned with
reference strains, and then compared.
Statistical analysis

Data were analyzed using SPSS software version 29.
To compare variables, Fisher's exact tests were applied.
The significance level was set at 0.05 or lower. The MICs
Value, Minimum Inhibitory Concentrations (MICs)
range, and MICs 90 were calculated for all antifungals.
The MIC90 was estimated for organisms with at least 9
observations, the minimum number for which
extrapolation would not be necessary. The 95%
Confidence Intervals (CI) for the MIC90 were estimated
as Dbootstrap percentile confidence intervals in
Mathematica 8 (Wolfram, Champaign, IL) for species
with at least 9 observations.

Results

Identification and antifungal susceptibility testing

Of 50 enrolled cases, 23 patients (46%) were infected
with COVID-19, and 33 were not.

There was a significant difference between the
glucocorticoid treatment (P<0.044), broad-spectrum
antibiotics therapy (P<0.051), and invasive ventilator
(P<0.01) in patients with COVID-19 in comparison to
cases without COVID-19.

There was a significant difference in the presence of a
Central Venous Catheter (CVC) (P<0.033) and intensive
care unit (ICU) duration (P<0.025) between patients with
and without COVID-19. There were no differences in
gender or risk factors between cases with and without
COVID-19 infection.

Using conventional diagnostic methods, 20 samples
of A. flavus (n:20; 66.66%) were identified, followed by
10 specimens of A. fumigatus (n:10; 33.33%) (Table 1).

Table 1. Frequency and distribution of 30 Aspergillus isolates from two centers: identification using conventional
methods and clinical localization of infection

Identification by ABPA Valve Pediatric Adults
sequencing method N (%) N (%) N (%) N (%)
A. flavus 15(75%) 5(25%) 4(20%) 16 (80%)
A. fumigatus 6(60%) 4(40%) 1(10%) 9(90%)
Total (n=30) 21(70%) 9(30%) 5 (16.6%) 25(83.33%)

This table presents the frequency and distribution of
30 Aspergillus isolates obtained from two clinical centers.
The table provides a breakdown of the most common
Aspergillus spp. identified, along with their relative
frequencies relative to the total number of isolates from
both centers. This distribution is analyzed to identify any

Preliminary monitoring of the 30 isolates for azole
resistance was conducted using the TCAM method. A
total of 22 isolates out of 30 (73.33%) grew on the azole-
containing Petri dish. Three other resistant isolates to
itraconazole (n=2) and voriconazole (n=1) were
identified as A. flavus according to morphological

notable patterns or trends in the occurrence of Aspergillus features (Table 2).

infections across the two settings.

Table 2. Resistance patterns to antifungal agents and molecular characteristics of Aspergillus spp.
Isolated from patients with and without COVID-19

Identification E\gr;;f)uéllg)z:ch(pg/mL)Susceptibility MICs90
Classical methods Molecular methods Itraconazole Voriconazole

A Sflavus A. flavus 1?N354;8 %3;)5

A flavus A. orizea (;i) (;\‘é)

A. Sfumigatus A. Sfumigatus (4N233) 4(}\?:'2)1

*MIC90 estimated for species with at least 9 isolates, the smallest number where extrapolation would not be necessary
*Estimation of 95% CI only performed for genus or species with at least 9 isolates

Regarding Table 3. The MICs of the tested antifungals
increased 4- to 16-fold for Aspergillus strains following

Sequencing analysis showed that all these resistant 4.
Sflavus isolates belonged to the 4. orizea.
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COVID-19 infection.

Regarding the present data, significant differences
were observed between increased use of antifungal agents
during COVID-19 and the emergence of drug-resistant
isolates.

Genomic DNA from 22 azole-resistant Aspergillus
isolates was amplified using the CYP51-A and CYP51-B
gene primers. 12/22 (54.54%) azole-resistant A. flavus
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isolates with the Tandem Repeat (TR34)/L98H (leucine-
to-histidine substitution) mutation, MICs above the CLSI
Epidemiological Cutoff Value (CLSI ECV). One carried
the F46Y /TR34. 5/22 azole non-WT A. fumigatus
isolates, CYP51-A analysis revealed that M2201, S297T/
TR34/L98H mutations, 4 A.orezea isolates had
C498T/TR34 at a CYP51-B gene.

Table 3. Minimum inhibitory concentrations (MICs) of antifungal
agents against Aspergillus spp. isolated from patients with and without

COVID-19
MIC range
Itraconazole MIC range

Itraconazole in

Strains in l?atients patients with Fo.l d change
without COVID-19 in MIC
COVID-19 (ug/mL)
(ng/mL) he
A. flavus 0.03-0.125 0.03-16 1-8
A. orizea 0.03-0.0.6 0.25-4 4-12
A. fumigatus 0.0625-0.125 0.5-4 6-10
MIC range of MIC range
voriconazole voriconazole in Fold change
Strains in patients patients with in MIC
without COVID-19 !
COVID-19 (ng/mL)
A. flavus 0.03-0.5 0.5-4 8-6
A. orizea 0.0625-0.125 0.25-4 2-10
A. fumigatus 0.03-0.5 0.125-4 4-6
This table presents the minimum inhibitory chronic ABPA, as well as Aspergillus cardiac infection,

concentrations (MICs) of various antifungal agents.
Isolates were obtained from both COVID-19-positive and
COVID-19-negative patients. Antifungal susceptibility
testing was performed according to CLSI/EUCAST
guidelines, and MIC values are reported to indicate the
level of antifungal activity required to inhibit the growth
of each isolate. The table also highlights potential
differences in susceptibility patterns between the two
patient groups, contributing to the understanding of
resistance trends during the COVID-19 pandemic.

Discussion

Resistance trends pre- and post-COVID

Since the onset of the COVID-19 outbreak,
considerable increases in antifungal resistance have been
reported, which may be due to increased use of wide-
spectrum systemic antifungal agents, but the true relative
frequency has not yet been defined. In this cross-sectional
study, azole and amphotericin B resistance were recorded
in Aspergillus spp. The identification of amphotericin B-
and itraconazole-resistant isolates after the COVID-19
pandemic has become a concern. Since the treatment of

requires repeated courses of amphotericin B and
itraconazole, this could increase the risk of selecting for
resistant species. In addition, as liposomal amphotericin
B is no longer commercially available in our region,
voriconazole and itraconazole are now considered first-
line treatment for invasive aspergillosis. Therefore, we
believe there will be greater pressure to use the mentioned
azole in the coming years, which implies a high risk of
selection for azole-resistant strains worldwide.

Resistance to azoles before the COVID-19 pandemic
has also been detected, albeit sporadically, in France,
India, Japan, China, Denmark, Switzerland, Norway,
Germany, Argentina, with prevalence values ranging
from 0% to 8.1% (24-27). The percentage of azole-
resistant strains is similar to that reported in other studies
during or after the COVID-19 pandemic, with the highest
proportion of non-wild-type isolates (19,28-30).

The rapid spread of resistance species highlights the
role of antifungal susceptibility testing. In the present
study, the TCAM was applied straightforwardly,
allowing us to monitor 30 isolates from two different
centers. There is a significant correlation between the
results obtained with this method and those of the CLSI
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reference method, supporting its reliability. However,
TCAM is a qualitative technique that does not precisely
define susceptibility to antifungal medications.

Mutation patterns

In the present study, the T293A alteration, leading to
the amino acid substitution L98H, was found in 12
isolates of 4. flavus: 8 were voriconazole—resistant, and 5
showed cross-resistance to itraconazole. The TR34
mutation was also reported in 12 isolates, the same
mutations reported from the Netherlands, Denmark, and
China (31), Brazil (32,33), and Kenya. Literature review
showed that the TR34/L98H substitution was the most
commonly reported mutation in 4. fumigatus recovered
from clinical samples.

For the first time, we reported (M2201, S297T, F46Y)
and C498T/TR34 substitution in clinical samples of A.
fumigatus isolates and clinical samples of A.orezea
isolates, respectively.

The pattern of antifungal resistance appears to have
evolved during the COVID-19 pandemic. Notably, there
has been an increase in the detection of azole-resistant
Aspergillus isolates in COVID-19 patients. Therefore, it
is strongly recommended to perform antifungal
susceptibility testing whenever feasible. Additionally,
effective surveillance systems should be implemented to
monitor the emergence and spread of azole-resistant
Aspergillus spp. These data are essential for clinicians to
understand the current incidence of azole resistance and
to optimize the management of affected patients.
Furthermore, this information is crucial in selecting the
most appropriate antifungal therapy, ensuring more
targeted and effective treatment strategies for managing
Aspergillus infections.

The Ethics Committee of Shahid Rajaee Hospitals,
Tehran, Iran, approved this study (ethics code:
IR.TUMS.SPH.REC.97000).
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