
  

A B S T R A C T

Poly (ADP-ribose) polymerase (PARP) inhibitors have emerged as promising 
agents in cancer prevention due to their ability to target the DNA repair machinery 
of cancerous cells. PARP enzymes repair single-strand DNA breaks through the 
base excision repair pathway. In cancer cells, particularly those with deficiencies 
in homologous recombination, PARP aids in DNA repair pathways and promotes 
cancer cell survival. PARP inhibitors suppress the enzyme function, thus 
inducing apoptosis in cancerous cells. Phytochemicals, bioactive compounds 
derived from plants, have gained increasing attention for their potential role in 
cancer prevention and treatment. We have investigated selected phytochemicals 
such as cinnamaldehyde, baicalein, curcumin, galangin, ellagic acid, resveratrol, 
pinocembrin, genistein, quercetin, and apigenin against PARP. The assessment of 
selected phytochemicals, including baicalein, galangin, ellagic acid, genistein, and 
apigenin, reveals promising attributes through various computational analyses. 
Specifically, these compounds exhibit favorable docking scores, indicating 
strong binding affinity to their target molecules. Molecular dynamic simulations 
for 10 nanoseconds were performed to validate the findings. Moreover, their 
potential as PARP inhibitors suggests a plausible role in inhibiting DNA repair 
mechanisms, an essential aspect of cancer therapy. These compounds were found 
to exert PARP inhibition through direct interference with enzymatic activity 
or modulation of PARP expression. This targeted investigation underscores 
the potential of these phytochemicals as PARP inhibitors, contributing to the 
advancement of precision cancer therapeutics.
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             Introduction

C ancer is a complex and often devastating 
group of diseases, characterized by 
the uncontrolled growth and spread of 
abnormal cells within the body. Around 
the world, approximately 17 million 

people are diagnosed with cancer every year (1). In 
recent years, there has been significant progress in the 
development of targeted cancer therapies, although 
conventional chemotherapy continues to be the primary 
approach for treating various types of cancer (2). 
Chemotherapeutic agents are designed to selectively 
target rapidly dividing cells. Nevertheless, a significant 
drawback of this treatment approach is its inability to 
differentiate between malignant and non-malignant 
cells (3). Patients undergoing chemotherapy frequently 
endure off-target toxicity and adverse side effects, 
as the chemotherapy drugs impact healthy tissues 
along with cancerous ones. The most common side 
effects are nausea and vomiting, with more than 90% 
of chemotherapy patients requiring anti-emetic drugs 
during cancer treatment (4). Patients also commonly 
report additional side effects such as fatigue, generalized 
pain, and various gastrointestinal disturbances. In 
contrast, targeted therapies aim at cancer-specific 
mutations and abnormalities to hinder tumor growth and 
progression while minimizing effects on surrounding 
non-malignant tissue. These therapies are frequently 
associated with more positive patient outcomes, as they 
are significantly less prone to causing off-target side 
effects (5). The Poly (ADP-ribose) polymerase (PARP) 
family consists of 17 members, alternatively referred to 
as the enzyme family ADP-ribosyl transferase diphtheria 
toxin-like (ARTD). These proteins are involved in 
several cellular processes like stress response, chromatin 
remodeling, DNA repair mechanism, and cell death, also 
known as apoptosis (6). The first member of the PARP 
protein family was identified in 1963 during research on 
an enzyme activated by nicotinamide mononucleotide 
(NMN) in a DNA-dependent manner. It was speculated 
to play a role in a reaction generating PolyA (7). The 
most widely acknowledged and extensively studied 
member of the PARP protein family is PARP1, initially 
recognized for its involvement in detecting and repairing 
single-strand DNA breaks (8). Recent findings indicate 
that PARP1 might also play a role in alternative DNA 
repair pathways, including nucleotide excision repair, 
classical and alternative non-homologous end joining, 
homologous recombination, and DNA mismatch repair 
(9). PARP inhibitors, often called PARPi, represent an 
innovative category of anti-cancer treatments. These 
inhibitors compete with NAD+ for the catalytically 
active site of PARP molecules and have demonstrated 
efficacy in treating various cancer types (10). PARP1 
exhibits Poly (ADP-ribose) activity, and upon activation 
triggered by DNA damage, it synthesizes branched 

PAR chains. This process is crucial for recruiting 
additional repair proteins, facilitating the repair of 
DNA single-strand breaks (11). Significantly, PARPi 
marked a significant advancement as the first cancer 
drugs to specifically target the DNA damage response, 
particularly in breast and ovarian cancers with BRCA1/2 
mutations (12). Over time, our comprehension of the 
mechanisms underlying tumor sensitization to PARP 
inhibitors has significantly advanced. Additionally, 
there has been an expansion in the application of PARPi 
to treat various other types of cancers, showcasing 
substantial progress in this field. Phytochemicals have 
garnered attention for their potential role in cancer 
(13), and various other ailments such as hypertension 
(14), diabetes (15), and several neurological disorders 
(16). The current study suggests virtually screening 
top phytochemicals with potential anticancer effects of 
phytoconstituents. The goal is to identify effective PARP-
1 inhibitors using computational methods. The Naturally 
Occurring Plant-Based Anticancerous compound 
Activity Target (NPACT) database includes 1574 entries 
providing comprehensive information on the structure, 
physical attributes, elemental composition, topological 
properties, in vitro and in vivo biological activities, 
cancer types, cell lines, inhibitory values, molecular 
targets, commercial suppliers, and drug likeness of 
naturally occurring plant-based anticancer compounds 
(17). The study aims to evaluate phytochemicals for 
their potency as PARP inhibitors against 4RV6 protein 
(Human ARTD1 (PARP1) catalytic domain in complex 
with inhibitor Rucaparib). We employed various 
computational techniques to elucidate and evaluate the 
efficacy of these phytochemicals. Various computational 
approaches including molecular docking, molecular 
dynamic simulation, physicochemical properties, 
pharmacokinetics, absorption, distribution, metabolism, 
toxicological, and biological activity prediction were 
taken into consideration.

Material and Methods

Phytoconstituent data

Phytoconstituents, predominantly flavonoids and 
polyphenols, were compiled from the NPACT database 
(https://crdd.osdd.net/raghava/npact). All these drugs 
have been documented for their anticancer activities. 
The phytochemicals chosen for the study are given in 
Figure 1.

Protein preparation

The investigation utilized the Protein Database (https://
www.rcsb.org/) to retrieve the PDB file corresponding 
to the Human ARTD1 (PARP1) catalytic domain in 
complex with the inhibitor Rucaparib, identifiable by 
its distinctive PDB ID: 4RV6. The Protein Data Bank 
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(PDB) is an extensive repository containing information 
on experimentally determined structures of proteins 
and nucleic acids. In the subsequent stages of analysis, 
protein preparation procedures were executed, involving 
the elimination of water molecules and the bound ligand, 
Rucaparib. This task was efficiently executed using 
PyMOL (18), an open-source software tool renowned for 
its proficiency in generating molecular visualizations. 
The strategic use of PyMOL rendered it an optimal 
choice for facilitating the docking preparation process.

Ligand retrieval and preparation

The molecular structures of selected phytochemicals 
were acquired in sdf file format from the PubChem 
database, a valuable repository offering comprehensive 
information on chemical compounds, including 
structures, formulas, and molecular weights. In the 
ligand preparation phase for subsequent analysis, we 
employed the OpenBabel tool (19) within PyRx 0.8 

(20). OpenBabel is a widely utilized software tool in 
molecular docking studies for ligand preparation. The 
ligand energy was minimized utilizing the mmff94 
force field, a method chosen for its effectiveness in 
achieving stable and dependable ligand structures. 
Subsequently, the ligands’ sdf file format was converted 
to pdbqt format, rendering the ligands executable and 
poised for docking. This conversion step was pivotal in 
ensuring compatibility and streamlining the subsequent 
molecular modeling and exploration of ligand-receptor 
interactions.

Molecular Docking

Molecular docking analysis investigated the interactions 
between chosen phytochemicals, serving as ligands, 
and the PARP-1 catalytic domain, the designated 
target macromolecule. In this study, we utilized the 
AutoDock Vina (21) tool, integrated into PyRx 0.8, to 
execute molecular docking. This facilitated a thorough 

 

 

 

 

 

 

 

 

 

 

Figure 1:  2D representation of protein-ligand interaction of top five hit compounds: (a) Apigenin (b) Baicalein (c) Ellagic acid (d) Ga-
langin (e) Genistein
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examination of conceivable binding interactions between 
the ligands and the macromolecule, providing valuable 
insights into their binding affinities and orientations.

Visualization of Docking Results

After conducting molecular docking, we identified 
the protein-ligand complex with the most favorable 
negative score, indicating a strong affinity. We selected 
this optimal binding pose for further analysis using 
Discovery Studio 4.5 (22). This software allowed us 
to visualize and explore the binding mode, enabling a 
detailed examination of ligand-receptor interactions. 
This in-depth analysis revealed critical molecular 
interactions that govern the ligand’s high binding affinity 
to the PARP-1 catalytic domain.

Molecular dynamic simulation

Molecular dynamics (MD) simulations were conducted 
on the PARP-1 catalytic domain in the presence 
of selected phytochemicals, including apigenin, 
baicalein, ellagic acid, galangin, and genistein. The 
simulations were performed utilizing the WEBGRO 
Macromolecular Simulations server (https://simlab.
uams.edu/ProteinWithLigand/protein_with_ligand.
html), a public service provided by the University 
of Arkansas for Medical Sciences (UAMS) through 
the GRACE High-Performance Computing Facility. 
Before MD simulations, molecular topologies for 
the specified compounds were generated using the 
GlycoBioChemPRODRG2 server (http://davapc1.
bioch.dundee.ac.uk/cgi-bin/prodrg). The GORMOS96 
43A1 force field was employed for MD simulations 
of the PARP-1 catalytic domain with the identified 
compounds, employing the SPC water model within 
a triclinic system and sodium chloride. Subsequently, 
energy minimization of the formed complexes was 
carried out using a steepest descent integrator with 
steps performed at every 5000 intervals. Equilibration 
under NVT/NPT conditions at 300 K and 1 bar pressure 
followed this. The MD simulations were conducted 
with a Leap-frog integrator, spanning a simulation 
time of 10 ns, constrained by the available resources. A 
fixed frame count of 1000 frames was established. The 
trajectories obtained from MD simulations included 
root-mean-square deviation (RMSD), root-mean-
square fluctuation (RMSF), radius of gyration (Rg), 
and solvent-accessible surface area (SASA). These 
parameters were analyzed at 300 K to gain insights 
into the complex formation dynamics (23, 24, 25). 
Utilizing these simulation techniques enhances our 
understanding of the interactions between the PARP-
1 catalytic domain and the selected phytochemicals, 
contributing valuable information for further research 
in this domain.

Prediction of Physiochemical Properties

The physicochemical properties of the compounds 
were analyzed using the SWISS ADME webserver (26). 
This assessment involved the determination of various 
parameters crucial for characterizing the drug-likeness 
of a compound, including topological polar surface area 
(TPSA), xlogp3 (lipophilicity), logS (solubility), the 
number of hydrogen acceptors, the number of hydrogen 
donors, and molecular weight. Furthermore, instances 
where the compounds violated Lipinski’s rule of five 
(27) were identified. Lipinski’s rule of five delineates the 
essential criteria that orally active drugs must satisfy to 
demonstrate their pharmacological effectiveness.

Prediction of absorption, metabolism and distribution

The evaluation of predictions related to absorption, 
distribution, and metabolism for the selected compound 
was conducted using admetSAR (28). An online tool, 
accessible at http://lmmd.ecust.edu.cn/admetsar2/, was 
used to analyze various parameters. These parameters 
played a pivotal role in the prediction process, enhancing 
our comprehensive understanding of the compound’s 
absorption, distribution, and metabolism attributes.

Prediction of toxicity

The chosen compound’s toxicity was evaluated using 
ProTox-II (https://tox-new.charite.de/protox_II/index.
php?site=compound_input) (29). This online platform 
functions as a virtual toxicity laboratory, facilitating the 
prediction of diverse toxicological outcomes linked to 
a chemical’s structure. ProTox-II is accessible to both 
academic and non-commercial users. The system utilizes 
computer models trained on empirical data from in vitro 
or in vivo experiments to anticipate potential hazards 
associated with existing and hypothetical substances.

Prediction of biological activity of the compound

We employed the PASS web server to forecast the 
biological actions of the chosen molecules (http://www.
pharmaexpert.ru/passonline) (30). Leveraging complex 
atom neighbor descriptors, the PASS analysis assists in 
elucidating a drug’s effects solely based on its molecular 
formula, emphasizing that its biological function is 
intricately linked to its chemical arrangement..

Results and discussion

Docking score of the compounds

The docking study involved utilizing the 3D crystal 
structure of the PARP-1 catalytic domain, identified by 
PDB ID: 6NRF. Autodock Vina, accessed through PyRx 
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0.8, served as the tool for analysis. To prepare both the 
protein and the ligand for docking, UCSF Chimaera’s 
Dockprep feature was employed. The protein was 
transformed into a macromolecule, and the chosen 
compounds underwent initial minimization using the 
mmff94 force field. Subsequently, the compounds were 
converted to pdbqt format using OpenBabel within PyRx. 
For the docking procedure, a grid box with dimensions 
of 59.95 Å × 42.18 Å × 41.10 Å was employed, centered 
at coordinates (25.40, -4.20, 18.63). The exhaustiveness 
level was set to the default value of 8. Specific details 
regarding the ligands or compounds and their respective 
docking scores are provided in Table 1. The most 
favorable docking poses of the top five phytochemicals 
and their interactions with the target protein are visually 
represented in Figure 1(a-e). Remarkably, each of the 
chosen compounds demonstrated promising docking 
scores, indicating their potential efficacy in binding to 
the PARP-1 catalytic domain.

Protein-ligand interaction

The top five distinct ligands—baicalein, galangin, 
ellagic acid, genistein, and apigenin—show various 
forms of interaction with the target protein. Baicalein 
is discerned to engage in Van der Waals interactions 
with the amino acids Tyr889, Tyr896, Ala898, and 
Tyr989. A Carbon-hydrogen bond manifests with 
Lys903, characterized by a bond length of 3.42 Å. Pi-
pi interactions are evident with His862 and Tyr907, 
featuring bond lengths of 4.97 Å and 3.63 Å, respectively. 
Furthermore, Baicalein establishes Hydrogen bonds 
with Trp861, Gly863, Phe897, Ser904, and Glu988, 
each distinguished by discrete bond lengths—2.97 Å, 
2.32 Å, 2.02 Å, 2.60 Å, and 2.13 Å respectively. The 
analogous patterns observed across the other ligands 
are noteworthy. For instance, Galangin participates in 
Van der Waals interactions with a spectrum of amino 
acids and conjoins Pi-pi interactions with Tyr907 (4.44 

Table 1: Compounds with their molecular weight (MW), PUBCHEM ID and docking score 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Name MW (g/mol) Docking Score (kcal/mol)PUBCHEM ID
Cinnamaldehyde 132.16 637511 -6.0 

Baicalein 270.24 5281605 -9.3 
Curcumin 368.4 969516 -8.8 
Galangin 270.24 5281616 -9.0 

Ellagic Acid 302.19 5281855 -10 
Resveratrol 228.24 445154 -8.0 

Pinocembrin 256.25 68071 -8.9 
Genistein 270.24 5280961 -10.5 
Quercetin 302.23 5280343 -9 
Apigenin 270.24 5280443 -9.2 

Table 1: Compounds with their molecular weight (MW), PUBCHEM ID and docking score

 
 
Table 2: Interaction between phytochemicals present in berberis extract with amino acids of active site of PARP-1 catalytic domain 
 

 
 
  

Ligand name Interaction Amino acids Bond length (Å) 
Baicalein Van der Waals Tyr889,  Tyr896,  Ala898,  Tyr989 ---- 

Carbon-hydrogen  bond Lys903 3.42 
Pi-pi His862, Tyr907 4.97, 3.63 

Hydrogen bond Trp861, Gly863, Phe897, Ser904, 
Glu988

2.97, 2.32, 2.02, 2.60, 
2.13 

Galangin  
Van der Waals 

 

Ser864,  Tyr889,  Met890, Tyr896,  
Phe897,  Ala898,  Lys903, Ser904, 

Glu988
---- 

Pi-pi Tyr907 4.44 
Pi-cation His862 5.40 

Hydrogen bonding Gly863, Gly888 1.95, 2.97 
Ellagic acid  

Van der Waals 
 

Trp861, Ser864, Gly888,  Tyr889, 
Tyr896, Ala898,  Lys903, Ser904, 

Asn987,  Gly988, Tyr989,

 
---- 

Pi-pi Tyr907 4.37 
Hydrogen bond His862, Glu863, Phe897 3.00, 1.99, 2.89 

Genistein Van der Waals Phe897, Ala898,  Lys903,  Ser904 ---- 
Pi-pi Tyr889, Tyr907 5.50, 4.38 

Hydrogen bond Trp861, Gly863, Tyr896, Glu988 3.01, 2.27, 2.83, 2.69 
Pi-cation His862 4.76 

Apigenin Van der Waals Trp861,  Ser864,  Tyr896, Phe897,  
Tyr899, Lys903 ---- 

Pi-pi His862, Tyr907 4.88, 3.60 
Hydrogen bond Gly863, Ser904, Glu988 2.19, 2.09, 2.08 

Table 2: Interaction between phytochemicals present in berberis extract with amino acids of active site of PARP-1 catalytic domain
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Å) and Pi-cation interactions with His862 (5.40 Å). 
Simultaneously, it engages in Hydrogen bonds with 
Gly863 (1.95 Å) and Gly888 (2.97 Å). Ellagic acid, on 
the other hand, interfaces through Van der Waals forces, 
Pi-pi interactions with Tyr907 (4.37 Å), and Hydrogen 
bonds with His862 (3.00 Å), Glu863 (1.99 Å), and 
Phe897 (2.89 Å). Genistein encompasses Van der Waals 
interactions, Pi-pi interactions with Tyr889 (5.50 Å) and 
Tyr907 (4.38 Å), Hydrogen bonds with Trp861 (3.01 
Å), Gly863 (2.27 Å), Tyr896 (2.83 Å), and Glu988 (2.69 
Å), alongside a Pi-cation interaction with His862 (4.76 
Å). Similarly, Apigenin demonstrates Van der Waals 
interactions, Pi-pi interactions with His862 (4.88 Å) 
and Tyr907 (3.60 Å), and Hydrogen bonds with Gly863 
(2.19 Å), Ser904 (2.09 Å), and Glu988 (2.08 Å). Table 
2 summarizes the interaction between the binding site of 
the target protein and selected phytochemicals.

Molecular dynamic (MD) simulation

Molecular dynamics (MD) simulation is indeed a 
powerful methodology for modeling the entire protein-

ligand system over a specific timeframe to examine 
conformational fluctuations (31). This technique 
employs Newton’s law of motion in the macromolecular 
system, generating courses through the simulation span. 
Analysis of trajectory coordinates allows examination 
of constraints defining the stability of the protein-ligand 
complex (32, 33, 34). Trajectories such as Rg, RMSD, 
RMSF, and SASA for the PARP were graphed in the 
presence of apigenin, baicalein, ellagic acid, galangin, 
and genistein at 300 K. The investigation into overall 
changes in the structure of PARP primarily focused on 
the RMSD of primary chain atoms of PARP, depicting 
deviations from the initial positions or coordinates of 
the prepared protein molecule. Alternatively, structural 
modifications could be assessed by investigating the 
protein’s Rg during small-angle X-ray scattering studies.
The Rg serves as a constraint for assessing the stability 

of a molecular ensemble based on trajectory markers 
derived from MD simulations. It signifies the distance 
from the rotation axis to the center of mass. As indicated 
by Rg, structural constancy is characterized by reduced 
fluctuations in Rg values, signifying more excellent Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Radius of gyration study plot for 10 nanoseconds MD Simulation: apigenin (yellow), baicalein (red), ellagic acid (purple), ga-
langin (magenta), and genistein (light green)

Figure 3: RMSD evaluation plot for 10ns: apigenin (yellow), baicalein (pink), ellagic acid (magenta), galangin (light green), genistein 
(light blue)
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stability in the protein-ligand complex. A smaller mean 
Rg value indicates the system is more tightly packed 
and exhibits a more compact overall structure. Figure 
2 provides insights into the Rg of the ligand-protein 
complex at temperatures of 300 K. After simulating MD 
simulations for 10 ns, the least Rg values are found for 
apigenin, ellagic acid, and galangin, suggesting effective 
inhibition.
RMSD is indeed an alternative method for assessing 

a protein’s stability following the conformational 
adaptation of the ligand. Using this methodology, the 
RMSD is derived by extracting atomic coordinates from 
the trajectories with a specific emphasis on backbone 
atoms. The calculation involves taking the square 
root of the mean value of the squares of these atomic 
positions. Decreased variability in the RMSD values 
for the complex signifies enhanced stability, and an 
RMSD value within the range of 3 angstroms indicates 
successful docking or fitting. It is essential to examine 
the RMSD of PARP with selected compounds (see Fig. 

3). The plots reveal that the highest RMSD value was 
recorded for the baicalein-PARP complex, while the 
genistein-PARP showed the lowest RMSD value. The 
first stable conformation was attained at 7 ns with no 
considerable deviations in the values.
RMSF is a valuable metric for characterizing the 

conformational stability of a macromolecular system. 
Similar to RMSD, it is determined by measuring the 
mean square root of the atomic positions, but in this 
case, it focuses on individual residue flexibility. Reduced 
coordinate fluctuation signifies more excellent stability, 
and symmetrical fluctuation indicates more constancy 
than asymmetrical variation. When plotting RMSF 
values for the protein-ligand complex, mainly focusing 
on fluctuations in specific regions, it provides insights 
into the induced fitting of the ligand. As depicted in 
Figure 4, it is evident that there is symmetrical fluctuation 
when MD simulations are conducted. Consequently, 
the complex exhibits stability, suggesting inhibition of 
PARP.

 

Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 

 

 

 

 

 

 

 

 

Figure 4: RMSF evaluation plot for 10ns: apigenin (black), baicalein (red), ellagic acid (blue), galangin (magenta), genistein (green)

Figure 5: Solvent accessible surface area study plot for 10 ns MD Simulation: apigenin (purple), baicalein (yellow), ellagic acid (orange), 
galangin (blue), genistein (green)
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The average SASA value was determined to be 
approximately 138 nm², falling within the range of 
150–130 nm². In the case of the NAR complex, a similar 
trend was observed; with a trajectory showing a decrease 
in values up to 10 ns, followed by minor fluctuations 
during the simulation period (Fig. 5). The average SASA 
value for the NAR complex was approximately 118 nm², 
ranging between 108–135 nm². Notably, the baicalein-
PARP complex displayed the lowest average SASA, 
while the genistein-PARP complex exhibited the highest 
SASA average.

Evaluation of pharmacological and toxicological 
properties 

The assessment of drug-likeness in the top five 
phytochemicals through an analysis of ADME/T 
properties was done using the SWISSADME 
webserver. This encompassed applying drug similarity 
rules, including Lipinski’s rule, to discern suitable 
compounds. The summarized outcomes are presented in 

Tables 3 and 4, with the latter offering insights into the 
anticipated absorption, distribution, and metabolism via 
the admetSAR server. The pivotal criteria influencing a 
compound’s potential as a drug candidate, encompassing 
topological polar surface area (TPSA), molecular 
weight (MW), logS (solubility), and xlog3 value, were 
considered.
Baicalein, with a molecular weight of 270.24, 

demonstrates notable properties in the molecular profile. 
Its LogS of -4.03 suggests high solubility and a LogP of 
3.16 indicates a tendency for lipophilic interactions. The 
molecule has five hydrogen bond acceptors and three 
donors, contributing to its moderate hydrogen bonding 
capacity. Baicalein exhibits high gastrointestinal 
absorption potential, and its drug-likeness is affirmed.
Galangin, sharing the same molecular weight of 

270.24, exhibits distinct characteristics. A LogS of -3.41 
maintains good solubility, and a LogP of 2.25 signifies 
moderate lipophilicity. Similar to Baicalein, Galangin 
has five hydrogen bond acceptors and three donors. It 
is classified as having high gastrointestinal absorption 

 
Table 3: Physiochemical properties of chosen phytochemicals 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Ligand 
Name MW PUBCHEM 

ID LogS Logo
/w 

Accept 
H 

Donor 
H 

TPSA 
(Å) Drug-likenessGI absorption

High90.90353.16-4.035281605270.24Baicalein YES 
High90.90352.25-3.415281616270.24Galangin YES 
High141.34481.10-2.945281855302.19Ellagic Acid YES 
Hig90.90352.67-3.725280961270.24Genistein h YES 
High90.90353.02-3.945280443270.24Apigenin YES 

 
Table 4: Absorption, distribution, and metabolism of the selected compound out of all docked compound as per  admetSAR online 
toolkit 

 
 
 
 
 
 
 
  

 Parameters  Baicalein 
(1) 

Galangin 
(2) 

Ellagic acid 
(3) 

Genistein 
(4) 

Apigenin 
(5) 

ABSORPTION 
 
Human oral bioavailability 
 
Human intestinal 
absorption 
 
 
P-glycoprotein substrate 
 
P-glycoprotein inhibitior 
 
DISTRIBUTION 
 
Subcellular localization 
 
 
METABOLISM 
 
CYP2C9 substrate 
CYP2D6 substrate 
CYP3A4 substrate 
CYP1A2 inhibition 
CYP2C9 inhibition 
CYP2D6 inhibition 
CYP2C19 inhibition 

 
 

Positive 
 
 

Positive 
 
 
 

Negative 
 

Negative 
 

 
Mitochondria 

 
 
 

 
Non-substrate 
Non-substrate 
Non-substrate 

Inhibitor 
Non-inhibitor 
Non-inhibitor 
Non-inhibitor 

 
 

Negative 
 
 

Positive 
 
 

 
Negative 

 
Negative 

 
 

Mitochondria 
 
 

 
 

Non-substrate 
Non-substrate 
Non-substrate 

Inhibitor 
Inhibitor 

Non-inhibitor 
Inhibitor

 
 

Positive 
 
 

Positive 
 
 

 
Negative 

 
Negative 

 
 

Mitochondria 
 
 

 
 

Non-substrate 
Non-substrate 
Non-substrate 
Non-inhibitor 
Non-inhibitor 
Non-inhibitor 
Non-inhibitor

 
 

Negative 
 
 

Positive 
 
 

 
Negative 

 
Negative 

 
 

Mitochondria 
 
 

 
 

Non-substrate 
Non-substrate 
Non-substrate 

Inhibitor 
Inhibitor 

Non-inhibitor 
Inhibitor 

 
 

Negative 
 
 

Positive 
 
 

 
Negative 

 
Negative 

 
 

Mitochondria 
 
 
 

 
Non-substrate 
Non-substrate 
Non-substrate 

Inhibitor 
Inhibitor 

Non-inhibitor 
Inhibitor

Table 3: Physiochemical properties of chosen phytochemicals

Table 4: Absorption, distribution, and metabolism of the selected compound out of all docked compound as per  admetSAR online toolkit
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potential, and its drug-likeness is also affirmed.
Ellagic Acid, with a slightly larger molecular weight 

of 302.19, presents unique features. Its LogS of -2.94 
indicates comparatively lower solubility and a LogP of 
1.10 suggests a more hydrophilic nature. Ellagic Acid 
has eight hydrogen bond acceptors and four donors, 
indicating a higher potential for hydrogen bonding 
interactions. With a TPSA of 141.34 Å, it possesses 
a larger polar surface area. Despite lower solubility, 
ellagic acid is classified as having high gastrointestinal 
absorption potential and is drug-like.
Genistein, like Baicalein and Galangin, has a molecular 

weight of 270.24. Its LogS of -3.72 indicates moderate 
solubility and a LogP of 2.67 suggests moderate 
lipophilicity. With five hydrogen bond acceptors and 
three donors, Genistein shares a hydrogen bonding 
profile similar to that of Baicalein and Galangin. It is 
categorized as having high gastrointestinal absorption 
potential and showed drug-likeness.
With a molecular weight of 270.24, Apigenin aligns 

with its counterparts in certain aspects. It has a LogS of 
-3.94, indicating moderate solubility and a LogP of 3.02, 
suggesting a preference for lipophilic environments. 
With five hydrogen bond acceptors and three donors, 
Apigenin shares a hydrogen bonding profile similar 
to Baicalein, Galangin, and Genistein. Apigenin is 
classified as having high gastrointestinal absorption 
potential and exhibits drug-likeness.All the chosen 
phytochemicals have shown drug-likeness properties.
The toxicity prediction of compounds was indeed 

conducted using the Protox II server, and the findings 
are outlined in Table 5. The toxicity prediction results 
for five compounds—Baicalein, Galangin, Ellagic acid, 
Genistein, and Apigenin—were assessed using the 
Protox II server.
Regarding carcinogenicity, baicalein exhibited a weak/

low level, and ellagic acid showed weak/low activity, 
while galangin, Genistein, and apigenin were classified 
as inactive. Similarly, mutagenicity assessments revealed 
Baicalein to be weak/low, while Galangin, Ellagic acid, 

Genistein, and Apigenin were all inactive.
Across the board, the compounds demonstrated 

inactivity in cytotoxicity, immunotoxicity, and androgen 
receptor activity. Specifically, Baicalein, Galangin, 
Ellagic acid, Genistein, and Apigenin were inactive in 
these categories, indicating a lack of toxicity concerning 
these parameters.
This comprehensive analysis provides valuable insights 

into the toxicity profiles of the compounds, aiding in a 
better understanding of their safety considerations in 
various contexts.

Predictions of Biological Activity of Compounds

The PASS webserver was indeed utilized to validate 
the anticipated biological effects. All five chosen 
compounds—Baicalein, Galangin, Ellagic acid, 
Genistein, and Apigenin—possess the ability to inhibit 
PARP. The Pa values for PARP inhibitor range between 
0.134 to 0.230, while for Pi, the value ranged between 
0.017 and 0.055. When the Pa value surpasses the Pi 
value, it indicates a probable presence of the specified 
biological activity. The summarized outcomes are 
presented in Table 6.

Conclusion

Your investigation indeed highlights the considerable 
promise of baicalein, galangin, ellagic acid, genistein, 
and apigenin as PARP inhibitors through various 
computational investigations, including molecular 
docking and MD simulation for 10 ns. The systematic 
use of computational tools has identified these 
phytochemicals as viable candidates and elucidated 
their molecular interactions with the target protein, 
thereby confirming their robust binding affinity. The 
favorable drug-likeness characteristics and reassuring 
safety profiles further underscore their suitability for 
therapeutic development. While your computational 
findings establish a solid foundation, it is indeed crucial 
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to emphasize the imperative of empirical validation 
through wet lab trials. The transition from virtual 
predictions to experimental verification is pivotal in 
affirming the efficacy of these phytochemicals and 
establishing their potential as PARP inhibitors in 
practical applications 
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