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A B S T R A C T

Previous studies have found that the metastasis-associated lung adenocarcinoma transcript 
1 (MALAT1) exerts its biological effects on the progression of diabetic nephropathy by 
sponging microRNAs and affecting the gene transcription of downstream molecules. 
In this study, the primary emphasis is placed on the functions that MALAT1 plays in 
relation to the pathophysiology of diabetic nephropathy as well as the processes that 
underlie these roles. In addition, the usage of this long noncoding RNA as a possible 
biomarker or therapeutic target for diabetic nephropathy will be discussed.
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             Introduction

D iabetic nephropathy (DN), also known 
as diabetic kidney disease (DKD), is 
regarded as one of the most serious 
microvascular consequences of diabetes 
mellitus (DM) (1). DN is the major 

cause of end-stage renal disease (ESRD) worldwide, 
which is related to higher morbidity and mortality in 
patients with diabetes (2). Patients with diabetes have a 

thirty to forty percent chance of developing DN (3). The 
overall prevalence of nephropathy in individuals with 
type 2 diabetes (T2D) in Iran was found to be 30.6%, 
according to a meta-analysis that included 18 papers 
and 6190 people ranging in age from 20 to 83 years (4). 
The increased excretion of albumin, hyperglycemia, 
hypertension, dyslipidemia, obesity, and smoking 
are some of the key risk factors that contribute to the 
development and progression of DN (5, 6).
The diagnosis of DN is made in the laboratory based 
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on the presence of albuminuria over a prolonged period 
of time and a gradual decline in glomerular filtration 
rate (GFR) (7). However, albuminuria has a number of 
drawbacks, such as a high degree of variability and a 
low degree of sensitivity, and the level of albuminuria 
sometimes cannot correctly reflect the particular 
situation of DN (8). In addition, the fall of GFR without 
albuminuria, also known as nonproteinuric diabetic 
kidney disease, has been increasingly identified, 
particularly in subjects with T2D (9, 10). As a result, a 
growing number of innovative biomarkers have surfaced 
with the purpose of identifying individuals who are at 
risk of developing DKD as well as early DKD in the 
hope of preventing the occurrence of ESRD (11).
In recent years, there has been an uptick in the amount 

of evidence suggesting that noncoding RNA (ncRNA), 
in particular long noncoding RNAs (lncRNAs), play an 
important part in the development and progression of 
DN (12-16). In addition, a large number of studies have 
shown that cell-free ncRNAs have been dysregulated in 
the serum, plasma, urine, and peripheral blood samples of 
patients with T2D (17-20). The metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1), also termed 
nuclear enriched abundant transcript 2 (NEAT2), is one 
of the ncRNAs in human disease that has received the 
most attention from researchers, especially in diabetes and 
diabetic-related complications (21, 22). In this study, the 
primary emphasis is placed on the functions that MALAT1 
plays in relation to the pathophysiology of DN as well as 
the processes that underlie these roles. In addition, the 
discussion will be about the usage of this lncRNA as a 
possible biomarker or therapeutic target for DN.

Methods

In this narrative review, a systematic literature review 
was performed using PubMed, Google Scholar, and Web 
of Science for English up to 4 June 2023, using the terms 
“DN”, “DKD”, “diabetes”, “lncRNA”, and “MALAT1”. 
To predict MALAT1-microRNA (miRNA) interactions, 
experimentally validated miRNA targets of MALAT-1 
lncRNA were extracted from the NPInter.V4 database 
(23). Subsequently, a list of experimentally validated 
mRNA targets of miRNAs related to MALAT-1 was 
obtained from the miRTarBase database (24). The KEGG 
pathway enrichment analysis was carried out using the 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) and miEAA 2.0 databases to 
explore functional annotation and pathway enrichment 
of the extracted target mRNAs (25, 26).

Results and Discussion

LncRNA and miRNA interactions: miRNA Sponge

ncRNA refers to the portion of an RNA molecule 
that does not get translated into a protein (27). There 

are various subclasses of ncRNA, including miRNA, 
circular RNAs (circRNAs), pseudogenes, tsRNAs, and 
piRNAs (28). The association of ncRNA with a variety of 
disorders, including cancer, inflammatory diseases, and 
metabolic diseases, has been the subject of a significant 
number of research studies (29, 30). miRNA is a type of 
single-stranded (ss) RNA transcript that has the function 
of post-transcriptional control and RNA silencing (31). 
RNA polymerase II and RNA Pol III (for some of them) 
are the enzymes responsible for the transcription of key 
miRNAs (32). The process of transcription results in 
the production of pri-miRNA molecules, which have 
changes similar to those found in mRNA, such as 5’ 
capping and 3’ polyadenylation, and have a hairpin 
structure that covers the mature miRNA sequence (29). 
miRNAs interact with short complementary sequences 
in the 3′ untranslated regions and govern cell cycle 
progression, apoptosis, and cellular development (33).
LncRNAs are single-stranded (ss) RNA with a length 

of 200 nucleotides. These RNAs are unable to encode 
proteins (34). Through the control of genomic expression, 
epigenetic alteration, and post-transcriptional regulation 
in cis or trans, lncRNAs play a significant role in a variety 
of physiological and pathological cellular functions (35). 
Additional important roles played by lncRNAs include 
genetic imprinting, genomic rearrangement, regulation 
of the cell cycle, and splicing (36, 37). The interaction 
between microRNAs and long noncoding RNAs, known 
as miRNA sponge or competing endogenous RNAs 
(ceRNA), can diminish the inhibitory effects of miRNAs 
on mRNAs or sponge them (38). Indeed, lncRNAs have 
the potential to behave as a sponge, soaking up a greater 
proportion of the miRNAs that are available to the target 
mRNA, thereby preventing the target gene repression 
(39) (Figure 1).

The prediction of MALAT1-miRNA interactions in DM

The MALAT1 gene is located within human 
chromosome 11q13 and was initially discovered in a 
screen for transcripts associated with metastasis and 
patient survival in non-small cell lung cancer (40, 
41). The major mechanisms of post-transcriptional 
regulation of MALAT1 include alternative splicing, 
promoting trimethylation of histone H3 at lysine 27, 
and facilitating transcription factor (TF) binding to the 
promoter of target genes and ceRNAs (42, 43).
The bioinformatics analysis revealed that ninety-two 

experimentally validated miRNA targets for MALAT-1 
were identified by the NPInter database. The enrichments 
of the miRNAs in KEGG pathway categories were 
performed using miEAA 2.0 databases. The significant 
KEGG pathway categories and correlated miRNAs were 
presented in the heatmap generated in DIANA-miRPath. 
Moreover, enrichment analysis revealed that the 32 
miRNA targets of MALAT-1 were enriched in diabetes-
related pathways including hypoxia-inducible factor 
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1 (HIF-1) signaling pathway, forkhead box O (FoxO) 
signaling pathway, phosphoinositide 3-kinase (PI3K)-
Akt signaling pathway, rat sarcoma viral oncogene (Ras) 
signaling pathway and mammalian target of rapamycin 
(mTOR) signaling pathway (Table 1).

The role of MALAT1-miRNA interactions in DN

Previous studies have found that MALAT1 exerts its 
biological effects on the progression of DN by sponging 
miRNAs, interacting with miRNAs, and affecting the 
gene transcription of downstream molecules (Figure 2). 
The focus here is on the potential function of MALAT1 

as a miRNA sponge in DN.

MALAT1 facilitates high glucose-induced 
endothelial-to-mesenchymal transition and renal 
fibrosis

Renal fibrosis is an important stage in the progression of 
DN into ESRD (44). This pathological event takes place 
as a result of an abnormally high level of extracellular 
matrix being deposited in the kidney tissue as a result of 
hyperglycemia, inflammation, and oxidative stress (45, 
46). In recent years, it has been reported that ncRNA is 
involved in both epithelial-to-mesenchymal transition 
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Figure 1.  Schematic overview of the interaction between lncRNA and miRNAs. miRNA sponge or competing endogenous RNAs (ceR-
NA) could diminish the inhibitory effects of miRNAs on mRNAs or sponge them.

Table 1. KEGG pathways enrichment analysis for genes regulated by MALAT1-miRNAs axis 
 
 

Subcategory Enrichment P-value P-adjusted Observed genes 

HIF-1 signaling pathway depleted 4.57e-6 1.33e-4 9 29 

FoxO signaling pathway depleted 3.85e-5 4.62e-4 10 37 

PI3K-Akt signaling pathway depleted 3.04e-5 4.62e-4 12 69 

MAPK signaling pathway depleted 5.84e-5 6.42e-4 7 54 

Rap1 signaling pathway depleted 2.36e-4 0.001353 7 38 

Ras signaling pathway depleted 2.36e-4 0.001353 7 40 

mTOR signaling pathway depleted 1.77e-4 0.001353 4 22 

TGF-beta signaling pathway depleted 8.43e-4 0.0042801 6 23 

Wnt signaling pathway depleted 0.0013139 0.005527 3 21 

Toll-like receptor signaling pathway depleted 0.0017519 0.0068014 3 24 

Jak-STAT signaling pathway depleted 0.0096295 0.0249234 6 26 
 

Table 1: KEGG pathways enrichment analysis for genes regulated by MALAT1-miRNAs axis
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and the damage of tubular cells (47). MALAT1 is one of 
the ncRNAs whose role in endothelial-to-mesenchymal 
transition and renal fibrosis has been explored. It has 
been demonstrated that MALAT1 is capable of acting as 
a sponge RNA for miR-145, which allows it to control 
the expression of the target gene ZEB2 and, as a result, 
induce epidermal to melanin transition (EMT) as well as 
fibrosis (48). Upregulation of MALAT1 in response to high 
glucose treatment has been shown to induce EMT in HK-2 
cells by activating the Wnt/-catenin pathway (49). Huang 
et al. demonstrated that MALAT1 expression levels are 
increased in renal tissues of diabetic rats and high glucose-
treated cells. This was associated with an increase in protein 
levels of collagen I and IV, fibronectin, and laminin in 
HK-2 cells. They also found that MALAT1 overexpression 
caused the level of miR-2355-3p to decrease, which led 
to the induction of cell damage, renal fibrosis, and kidney 
tissue destruction via the miR-2355-3p/IL6ST/STAT3 
signaling pathway (50). Furthermore, it has been shown 
that the expression levels of MALAT1 were upregulated 
in renal fibrotic tissues in diabetic patients and this lncRNA 
could worsen renal fibrogenesis in obstructive nephropathy 
through the miR-145/FAK pathway (51).

The interplay between lncRNA-MALAT1 and 
pyroptosis

It has been suggested that pyroptosis and further 
inflammatory response play a critical role in the DN 
pathogenesis (52). Pyroptosis is an inflammatory 
programmed cell death that is mediated by the activation 
of caspase-1 following the formation of the NOD-like 
receptor protein 3 (NLRP3) inflammasome complex 
(53). A number of studies have reported the influence 
of lncRNAs/miRNAs interaction in pyroptosis. In this 
regard, it has been reported that downregulation of 
MALAT1 could induce cell pyroptosis by inhibiting 
miR-30c targeting for NLRP3 in the high glucose-treated 
HK-2 cells (51). Moreover, Li et al. reported that lncRNA 

MALAT1 could moderate renal tubular epithelial 
pyroptosis by modulating the miR-23c-ELAVL1 axis 
in high-glucose-treated HK-2 cells (54). The findings 
of a recent study showed that knocking down of the 
MALAT1 protects MPC-5, a mouse podocyte cell line, 
against pyroptosis and oxidative stress caused by HG. 
This protection was achieved by the modulation of miR-
200c and the expression of its target genes (55).

MALAT1 mediates tubular impairment induced by 
hyperglycemia and inflammation

One of the most important factors that contributes to the 
development of DN is tubular impairment, which can be 
caused by hyperglycemia (9). MALAT1 could activate the 
AMP-activated protein kinase (AMPK)/mTOR signaling 
by interacting with LIN28A and Nox4/AMPK/mTOR 
signaling axis, thereby worsening high glucose-induced 
renal tubular injury (56). It has also been suggested 
that downregulation of MALAT1 attenuates HK-2 
cell viability inhibition, apoptosis, and inflammation 
induced by hyperglycemia by targeting miR-15b-5p (57). 
Interestingly, XU et al. revealed that paclitaxel could 
protect against LPS-induced acute kidney injury via the 
modulation of MALAT1/miR-370-3p/HMGB1 axis and 
the expression of TNF-α, IL-6 and IL-1β (58). A recent 
study investigated the involvement of MALAT1 lncRNA 
in the progression of cellular inflammation and renal 
tubular epithelial cell injury. The results revealed that the 
downregulation of MALAT1 may be able to reduce the 
severity of acute kidney injury by acting as a mediator of 
the miR-204/APOL1 pathway (59).

MALAT1 as a therapeutic target in DN

The evidence indicates that MALAT1 could act as 
a potential therapeutic target for the diagnosis and 
treatment of diabetes-related complications including 
DN (60). QiHuangYiShen, a traditional Chinese herbal 
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Figure 2. Schematic representation of MALAT1 function in DN. Sponging effect of MALAT1 on the miRNAs could induce endotheli-
al-to-mesenchymal transition and renal fibrosis, pyroptosis and tubular impairment in breast DN.
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medicine formula, attenuates epithelial-mesenchymal 
transition in the kidney of diabetic nephropathy rats 
by the downregulation of MALAT1 lncRNA (61). Zuo 
et al. suggested that Atorvastatin exerts its protective 
effect on the kidney through the regulation of MALAT1 
expression and reduction of oxidative stress. Indeed, 
they reported that Atorvastatin protects podocyte cells 
via the MALAT1/miR-200c/NRF2 signal pathway from 
pyroptosis and oxidative stress induced by high glucose 
treatment (55). Resveratrol (3,4′,5-trihydroxystilbene) is 
a polyphenol anti-toxin that can prevent a wide range of 
human diseases, including diabetes (62-64). Resveratrol 
reduced the expression levels of MALAT1 and thereby 
alleviated sepsis-induced acute kidney injury in cecal 
ligation and puncture (CLP)-induced septic model rats 
by deactivating the lncRNA MALAT1/MiR-205 axis 
(65).

Diagnostic role of MALAT1 as in DN

Promising evidence has revealed that lncRNAs could 
serve as potential biomarkers for early diagnosis of diabetes 
and its complications (17, 37). In this regard, it has been 
demonstrated that MALAT1 is significantly upregulated 
in DN tissues compared with normal (57). Fawzy et al. 
reported that serum levels of MALAT1 were elevated in 
the ESRD group compared to diabetics without ESRD. 
They also revealed that MALAT1 expression levels were 
correlated with higher levels of total triglyceride (66). In 
line with this finding, it has been shown that MALAT1 
expression is increased in the micro-albuminuria diabetic 
group compared with the diabetic normoalbuminuria 
group and could act as a potential biomarker for early 
detection of DN (67). Furthermore, MALAT1 serum level 
has recently been recognized as a potential biomarker 
with high sensitivity and specificity to differentiate acute 
kidney injury patients from control subjects (59). It has 
also been reported that serum levels of MALAT1 had a 
direct correlation with urinary MALAT1 and miRNA-124 
serum levels and negatively with miRNA 29a serum levels 
and eGFR (68). Zhou et al. revealed that the MALAT1 
expression profile in peripheral blood mononuclear 
cells was increased in diabetic kidney disease groups 
compared to control. They also reported that MALAT1 
expression levels were correlated with ACR, urine β2-
microglobulin, urine α1-microglobulin, and creatinine 
(69). Recent studies have shown that the expression levels 
of MALAT1 are increased in the urine samples of type 1 
diabetes patients with diabetic kidney disease (21).

Conclusion 

Increasing evidence has demonstrated that lncRNA, 
especially MALAT1, plays a critical role in the 
pathogenesis and progression of DN. Accordingly, this 
review explored and clarified the sophisticated research 

and progress with the possible roles of MALAT1 in 
DN. MALAT1 exerts its effect through interaction with 
miRNAs and modulating their effects on important 
signaling pathways involved in the development and 
progression of DN. Furthermore, based on the literature 
discussed above, pharmacological and diagnostic 
targeting of MALAT1 may serve as a potential alternative 
strategy for the diagnosis and treatment of DN.
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