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ABSTRACT 

In the last days of 2019, a novel strain of coronaviruses reported in Wuhan and spread 

rapidly all over the world which called 2019 novel coronavirus (2019- nCoV). Almost 

a few months later in the early 2020 (January 2020), the WHO declared the outbreak 

of COVID-19 a Public Health Emergency which Compared with the other SARS- 

CoV, has a stronger transmission capacity. 

Although respiratory problems are the main clinical symptoms of COVID-19, some 

patients also experience other conditions and injuries, such as severe vascular 

damage. Therefore, it can be said that understanding the damage caused by this 

infection to the vascular system and its underlying mechanisms is of great 

importance. 

ARS-CoV-2, which has become a major global 

infectious agent in recent years, is a member of the 

coronavirus family that is covered by a positive 

single-stranded linear RNA [1]. It is containing four 

below essential structural proteins (Figure 1). 

The RBD of SARS-COV-2 must bind to ACE2 to enter 

cells, which this membrane fusion and virus entry into 

host cells dependent on host proteases including 

TMPRSS2. Cathepsin L is a lysosomal protease involved 

in cell entry through endocytosis [2]. 

SARS-CoV-2 with 96.2% genomic similarity, is very 

closely related to the intermediate horseshoe bat RaTG13 

coronavirus [3]. Other studies reported evidence of the 

incidence of a coronavirus equivalent to SARS-CoV-2 in 

Malayan pangolins. Therefore, it can be said that, the 

Pangolin-CoV is the second closest relative coronavirus 

to SARS-CoV-2 [4]. 

Infection caused by this virus causes different levels of 

damage to the host body. Although the highest and most 

severe form of this type of risk is due to the development 

of ARDS, however, following infection with SARS -

COV-2 and severe inflammation in patients with many 

other organs such as heart, kidney, gastrointestinal tract 

[5]. The nervous and vascular systems are also associated 

with pathological changes [6-9]. Among these, many 

factors such as the amount of specific receptor for the 

virus on the cell surface of the organ and the physiology 

of the organ affect the type and severity of pathological 

manifestations [10]. The vastness of the vascular system 

and the volume of tissue interactions of this system with 

other organs create a high potential for the risks of 

infection with this infection. 
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Figure 1- Essential structural proteins in SARS-CoV-2 

 

ACE2: Functional Receptor for SARS-CoV-2 

ACE 2 is an anti-regulatory enzyme of RAAS and the 

angiotensin II hydrolysis catalyst to angiotensin that 

binds to cell membranes [11-19]. Like SARS-COV, 

SARS-COV-2 begins to enter the host cell by binding to 

the ACE2 receptor on the surface of alveolar pneumocyte 

cells. This receptor plays the role of RBD for the SARS-

COV-2 spike protein [18,20]. This receptor is expressed 

in different cells (Figure 2). However, according to 

studies, 83% of ACE2 protein is expressed in type 2 

alveolar epithelial cells, so these cells are the main host 

of viral invasion. Besides, ACE2 mRNAs are expressed 

in humans in almost all organs, including the kidneys, 

blood vessels, heart, and testes, and this may increase the 

likelihood of infection of other organs by this infectious 

agent [21-23]. 

Figure 2- Tissues and cells that have an ACE 2 receptor. 

 

The high affinity of ACE 2 for SARS-COV 2 compared 

to SARS -COV 1 S glycoprotein may explain the greater 

transmission and infectivity of this pathogen in the 

present conditions [24]. Critical exclusivity of ACE2 

receptor cause the hypoxia-inducibility regulated by 

hypoxia-inducible factor-1. SARS-CoV-2 loading was 

low in samples of deceased people with hypoxia, despite 

this, increased ACE2 expression in endothelial cells 
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increases the possibility of SARS-CoV-2 binding in 

distant organs [24-27]. 

Vascular Injury in patients with COVID19  

Reports of histological studies in patients infected with 

new infectious virus reveal marked vascular pathological 

changes (Table 1). Many of the pathophysiological 

mechanisms observed in COVID-19 are associated with 

vascular injury (28-30). 

• Expression of ACE 2 receptor at the surface of 

vascular cells 

• The vascular cell infection due to the SARS-CoV-2 

• The repeated angiocentric mixed inflammatory  

• The relief of interstitial exudates linked to increased 

vascular 

• The presence of numerous microvascular 

microthrombi 

Table1- Vascular pathological changes in COVID19 [28-

29,31-32] 

Lumen blockage 

Focal hemorrhage 

Increase the thickness of the vessel wall 

Increased lymphocytes in and around blood vessels 

Congestion 

Vascular hyperplasia 

Microthrombi 

Observation of SARS-COV-2-induced viral particles in 

endothelial cells and subsequent apoptosis of endothelial 

cells throughout the vascular beds of various organs in 

patients with COVID-19 is a valuable indication of the 

virus's ability to infect endothelial cells and surrounding 

cells [33]. This virus can directly infect engineered 

human blood vessel organoids in vitro, thereby inducing 

apoptosis due to vascular damage and endothelitis, which 

may partly explain the systemic dysfunction of 

microcirculation in the vascular beds of organs [34]. 

COVID 19 causes an increase in serum levels of pro-

inflammatory factors such as IL-8, IL-7, IL-6, IL-22, IL-

17, IL-10, IL-1, and TNF-α, which in turn resulting in 

overactivation of T cells, Th17 skewing, and increased 

cytotoxicity of CD8 T cells [35-36]. However, as a result 

of these immune complexes, the association of an 

immunoglobulin and a viral antigen can lead to the 

activation of complement and inflammatory cell 

vasculitis. Indeed, the fact that histopathologic changes 

in rhesus-inoculated but suppressed macular 

degeneration of the MERS-CoV immune system 

underscore the role of the destructive immune response 

in diseases caused by the coronavirus [37-39]. 

The significant pathological pattern of vascular injury 

is COVID-19 development in children and juveniles 

which resulting from endothelial damage and 

microthrombi, initially reported as “acute acro-ischemia” 

of the extremities [40]. These skin ulcers usually present 

as multiple and have variable [38-42]:  

• Pain 

• Variably sized 

• Erythematous reddish-purple irregular round lesions 

• Itching 

• Burning 

• Fever  

• Muscle pain 

• Headache  

MIS-C is another complication of severe vascular 

involvement at all ages. This complication, along with 

Acro ischemia, is associated with vascular inflammation 

and injury, the formation of microtubules, and the release 

of cytokines produced, which in turn leads to a severe 

immune response in people with SARS-CoV-2 infection 

[43]. 

Cell death and increased vascular permeability 

(capillary leakage syndrome) are other complications of 

COVID 19, which can be seen following irregular 

inflammatory responses and overproduction of 

proinflammatory cytokines [44]. What is certain is that 

the binding of SARS-CoV-2 to ACE2, in addition to 

disrupting its activity, also activates the kallikrein-

bradykinin pathway, thereby increasing vascular 

permeability [45]. 

Coagulation disorders in patients with COVID19  

Coagulation abnormalities were identified as an 

outstanding feature in COVID-19 patients that were 

outstanding to have an aptitude for developing 

thrombotic complications. The normal endothelium 

prevents coagulation by expressing multiple types of 

molecules (Figure 3) and, in fact, provides an 

"anticoagulant" resting-state [46-48]. 

Endothelial damage following a COVID19 viral 

infection eventually leads to disruption of the normal 

controlled antithrombotic state, which activates the 

endothelium in response to inflammatory cytokines and 

other signals emitted during cell death [49]. Numerous 

events help to create such a state (Table 2): 

Table 2- The events that contribute to prothrombotic state 

1- Lack of precise regulation in the production of GAGs that cause anticoagulant proteins to separate from the endothelial cell 
surface. 

2- Tissue factor (TF) production increases with thrombin production and subsequent conversion of fibrinogen to fibrin. 
3- Activation of IL-1β and TNF-α endothelial cells, which is ultimately associated with platelet uptake and accumulation. 
4- Activation of platelet activity by some coagulation proteases 
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Figure 3- Anticoagulants secreted by the endothelium 

 

Microbial infiltration into the organism initiates 

thrombosis and fibrin deposition and platelet 

aggregation, which helps the host defense by preventing 

the spread of infectious microorganisms [50]. 

Interference between homeostasis and innate immune 

responses creates the right conditions for the activation of 

innate immune cells through the formation of 

"immunotrombs" [51]. Unrestrained stimulation of 

cytokine release can coincide with the loss of hemostatic 

agents and an increased risk of bleeding. [52].  

It has previously been shown that markers of 

endothelial inflammation increase in patients with 

COVID-19 admitted to the ICU [53]. These cases may 

explain the post-mortem findings of patients with 

COVID-19 in which micro platelet-rich thrombotic 

deposits are found. Thrombi formation is a common 

feature seen in DAD; however, it can be argued that 

severe COVID-19 can cause separate thrombotic 

vasculopathy [54]. 

The incidence of arterial and venous thromboembolism 

following infection with COVID 19, despite 

anticoagulant therapy with LMWH, indicates the activity 

of additional pre-coagulation mechanisms [55]. One of 

the things that can be mentioned in this regard is the 

potential pathways that lie in FGL2 [56]. These pathways 

are involved in thrombotic processes involving the innate 

immune arm [57]. 

COVID-19 coagulation abnormalities (Table 3) follow 

an unusual pattern compared to other coagulation 

diseases. 

Table 3- COVID-19 coagulation abnormalities 

Normal or low platelet count 

Elevation of d-dimer level 

Elevation of fibrinogen level 

Microvascular venous and arterial thrombosis 

Abnormal coagulation tests (including longer PT, 

elevated d-dimer, and fibrin degradation (FDP)) at the 

time of hospitalization is associated with a mild prognosis 

and an increase in mortality [58].  

Conclusion 

Processes including vascular injury, inflammation, and 

thrombosis due to SARS-CoV-2 infection can explain the 

wide range of pathologies observed in COVID-19 

patients. 

The nature of COVID-19 infection is such that it can 

affect blood vessels in various organs, although in severe 

cases, it is best described as a multisystem vascular 

disease. 
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